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Abstract

In this report, we propose an extension of the well-known Simultaneous Orthogonal Matching Pursuit (SOMP) algorithm to
solve a multi-task multivariate classification problem using sparse representations. This corresponds to the case where an event is
described by multiple representations, and separate training dictionaries are designed for each such representation.

I. NOTATION

Let yyyi ∈ Rm, i = 1, . . . , T be T different representations1 of the same physical event, which is to be classified into one of
C different classes. Let YYY := [yyy1 . . . yyyT ] ∈ Rm×T . Assuming n training samples/events in total, we design T dictionaries
DDDi ∈ Rm×n, i = 1, . . . , T , corresponding to the T representations. We define a new composite dictionaryDDD := [DDD1 . . . DDDT ] ∈
Rm×nT . Further, each dictionary DDDi is represented as the concatenation of the sub-dictionaries from all classes corresponding
to the i-th representation of the event:

DDDi := [DDD1
i DDD

2
i . . . DDDC

i ], (1)

where DDDj
i represents the collection of training samples for representation i that belong to the j-th class. So, we have:

DDD := [DDD1 . . . DDDT ] = [DDD1
1 DDD

2
1 . . . DDDC

1 . . . DDD1
T DDD2

T . . . DDDC
T ]. (2)

An important assumption in designing DDD is that the k-th column from each of the dictionaries DDDi, i = 1, . . . , T , taken
together offer multiple representations of the k-th training sample/event.

II. MULTI-TASK MULTIVARIATE SPARSE REPRESENTATIONS

A test event YYY can now be represented as a linear combination of training samples as follows:

YYY = [yyy1 . . . yyyT ] = DDDSSS =
[
DDD1

1 DDD
2
1 . . . DDDC

1 . . . DDD1
T DDD2

T . . . DDDC
T

]
[ααα1 . . . αααT ] , (3)

where the coefficient vectors αααi ∈ RnT , i = 1, . . . , T , and SSS = [ααα1 . . . αααT ] ∈ RnT×T .
We examine the structure of the coefficient matrix SSS and make some crucial observations.
• It is reasonable to assume that the i-th representation of the test event (i.e. yyyi) can be approximately represented by the

linear span of the training samples belonging to the i-th representation alone (i.e. only those training samples in DDDi). So
the columns of SSS have the following structure: each vector αααi has non-zero coefficients only in the locations corresponding
to the columns of DDDi and has zeros elsewhere. As a result, SSS exhibits block-diagonal structure.

• Each representation yyyi of the test event is a sparse linear combination of the training samples in DDDi. Suppose the event
belongs to class c ∈ {1, . . . , C}; then only those coefficients in αααi that correspond to DDDc

i are expected to be non-zero.
• Furthermore, the non-zero weights of training samples in the linear combination exhibit one-to-one correspondence across

representations. If the j-th training sample from the c-th class in DDD1 has a non-zero contribution to yyy1, then for all
i = 2, . . . , T , yyyi has non-zero contributions from the j-th training sample of the c-th class in DDDi.

This suggests a joint sparsity model similar to the model introduced in [1]. However, the multi-task nature of the problem
with different dictionaries DDDi does not permit us to apply the SOMP algorithm from [1] directly. Since SSS obeys column
correspondence, we introduce a new matrix SSS′ ∈ Rn×T as the transformation of SSS with the zero coefficients removed,

SSS′ =

 α1
1 . . . α1

i α1
T

...
...

...
...

...
αC

1 . . . αC
i . . . αC

T

 ,
where αααj

i refers to the sub-vector extracted from αααi that corresponds to coefficients from the j-th class. Note that, in the i-th
column of SSS′, only the coefficients corresponding to DDDi are retained (for i = 1, . . . , T ).

1The term multi-task is used to refer to these multiple representations in some application domains such as heterogeneous sensor fusion.
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We can now apply row-sparsity constraints similar to the approach in [1]. Our modified optimization problem becomes:

ŜSS
′

= arg min
SSS′
‖SSS′‖row−0 subject to ‖YYY −DDDSSS‖F ≤ ε, (4)

for some tolerance ε > 0. We minimize the number of non-zero rows, while the constraint guarantees a good approximation.
The matrix SSS can be transformed into SSS′ by introducing matrices HHH ∈ RnT×T and JJJ ∈ Rn×nT ,

HHH = diag [111 111 . . . 111] ,JJJ = [IIIn IIIn . . . IIIn] ,

where 111 ∈ Rn is the vector of all ones, and IIIn denotes the n-dimensional identity matrix. Finally, we obtain SSS′ = JJJ (HHH ◦SSS),
where ◦ denotes the Hadamard product, (HHH ◦SSS)ij , hijsij for all i, j.

III. EXTENSION OF SOMP FOR MULTI-TASK MULTIVARIATE SPARSE REPRESENTATIONS

Eq. (4) represents a hard optimization problem due to presence of the non-invertible transformation from SSS to SSS′. We bypass
this difficulty by proposing a modified version of the SOMP algorithm for the multi-task multivariate case.

Recall that the original SOMP algorithm gives K distinct atoms (assuming K iterations) from a dictionary D that best
represent the data matrix Y . In every iteration k, SOMP measures the residual for each atom in D and creates an orthogonal
projection with maximal correlation. Extending this to the multi-task setting, for every representation i, i = 1, . . . , T , we can
identify the index set that gives the highest correlation with the residual at the k-th iteration as follows:

λi,k = arg max
j=1,...,n

T∑
q=1

wq

∥∥RRRt
k−1dddq,j

∥∥
p
, p ≥ 1,

where wq denotes the weight (confidence) assigned to the q-th representation, dddq,j represents the j-th column of DDDq, q =
1, . . . , T , and the superscript (·)t indicates the matrix transcript operator. After finding λi,k, we modify the index set to:

Λi,k = Λi,k−1

⋃
λi,k, i = 1, . . . , T.

Thus, by finding the index set for the T distinct representations, we can create an orthogonal projection with each of the atoms
in their corresponding representations. The algorithm is summarized below in Algorithm 2.

Algorithm 1 SOMP for multi-task multivariate sparse representation-based classification
Input: Dictionary DDD as defined in Section I, signal matrix YYY , number of iterations K

Initialization: residual RRR0 = YYY , index set Λ0 = φ, iteration counter k = 1
while k ≤ K do

(1) Find the index of the atom that best approximates all residuals:
λi,k = arg max

j=1,...,n

∑T
q=1 wq

∥∥RRRt
k−1dddq,j

∥∥
p
, p ≥ 1

(2) Update the index set Λi,k = Λi,k−1

⋃
{λi,k} , i = 1, . . . , T

(3) Compute the orthogonal projector pppi,k =
(
DDDt

Λi,k
DDDΛi,k

)−1

DDDt
Λi,k

yyyi, for i = 1, . . . , T , where DDDΛi,k
∈ Rn×k consists

of the k atoms in DDDi indexed in Λi,k

(4) Update the Residual Matrix RRRk = YYY −
[
DDDΛ1,k

ppp1,k . . . DDDΛT,k
pppT,k

]
(5) Increment k: k ← k + 1

end while
Output: Index set Λi = Λi,K , i = 1, . . . , T ; sparse representation ŜSS

′
whose non-zero rows indexed for each representation by

Λi, i, i = 1, . . . , T , are the K rows of the matrix
(
DDDt

Λi,K
DDDΛi,K

)−1

DDDt
Λi,K

YYY .
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