A Comparative Study of Basis Selection Techniques for SAR Automatic Target Recognition

IEEE Radarcon 2012

May 10, 2012

Automatic Target Recognition (ATR)

- Exploit imagery from diverse sensed sources for automatic target identification ${ }^{1}$
- Variety of sensors: synthetic aperture radar (SAR), inverse SAR (ISAR), forward looking infra-red (FLIR), hyperspectral
- Diverse scenarios: air-to-ground, air-to-air, surface-to-surface

Figure: Schematic of ATR framework. The classification and recognition stages assign an input image/ feature to one of many target classes.

[^0]

Target classification

Two-stage framework:
(1) Feature extraction from sensed imagery

- Geometric feature-point descriptors ${ }^{2}$
- Eigen-templates ${ }^{3}$
- Transform domain coefficients: wavelets ${ }^{4}$

[^1]

Target classification

Two-stage framework:
(1) Feature extraction from sensed imagery

- Geometric feature-point descriptors ${ }^{2}$
- Eigen-templates ${ }^{3}$
- Transform domain coefficients: wavelets ${ }^{4}$
(2) Decision engine which performs class assignment
- Linear and quadratic discriminant analysis
- Neural networks ${ }^{5}$
- Support vector machines (SVM) ${ }^{6}$

[^2]
Recent research trends: Fusion

- Exploit complementary yet correlated information offered by different sets of features/classifiers
- Ensemble classifiers ${ }^{7}$
- Voting strategy ${ }^{8}$
- Boosting ${ }^{9}$

[^3]

Recent research trends: Fusion

- Exploit complementary yet correlated information offered by different sets of features/classifiers
- Ensemble classifiers ${ }^{7}$
- Voting strategy ${ }^{8}$
- Boosting ${ }^{9}$
- Meta-classification ${ }^{10}$
- Probabilistic graphical models for feature fusion ${ }^{11}$ (boosting on graphs which model low-level features)

[^4]

Motivation: Feature extraction

- Feature extraction \rightarrow projection to lower dimensional feature space
(1) Inherent low-dimensional space that captures image information with minimal redundancy ${ }^{12}$
(2) Computational benefits for real-time applications

[^5]

Motivation: Feature extraction

- Feature extraction \rightarrow projection to lower dimensional feature space
(1) Inherent low-dimensional space that captures image information with minimal redundancy ${ }^{12}$
(2) Computational benefits for real-time applications
- Optimization problem:

$$
\boldsymbol{x}=\arg \min _{\hat{\boldsymbol{x}}}\|\boldsymbol{y}-\boldsymbol{A} \hat{\boldsymbol{x}}\|_{2}
$$

- \boldsymbol{y} : target image in \mathbb{R}^{m}
- \boldsymbol{x} : corresponding feature vector in $\mathbb{R}^{n}, n<m$
- A : projection matrix in $\mathbb{R}^{m \times n} \rightarrow$ collection of n basis vectors, each in \mathbb{R}^{m}

[^6]

Motivation: Feature extraction

- Feature extraction \rightarrow projection to lower dimensional feature space
(1) Inherent low-dimensional space that captures image information with minimal redundancy ${ }^{12}$
(2) Computational benefits for real-time applications
- Optimization problem:

$$
\boldsymbol{x}=\arg \min _{\hat{\boldsymbol{x}}}\|\boldsymbol{y}-\boldsymbol{A} \hat{\boldsymbol{x}}\|_{2}
$$

- \boldsymbol{y} : target image in \mathbb{R}^{m}
- \boldsymbol{x} : corresponding feature vector in $\mathbb{R}^{n}, n<m$
- A : projection matrix in $\mathbb{R}^{m \times n} \rightarrow$ collection of n basis vectors, each in \mathbb{R}^{m}
- How to choose A ?

[^7]

Review: Principal Component Analysis (PCA)

- Statistical tool for dimensionality reduction via change of basis
- Modeling an observation of physical phenomena as a linear combination of basis vectors

- Eigenvectors of data covariance matrix form the projection basis
- Applications in image classification: eigenfaces for face recognition ${ }^{13}$, eigen-templates for ATR ${ }^{14}$

[^8]

Review: Singular Value Decomposition (SVD)

- Computational tool underlying PCA
- Data matrix $\boldsymbol{X} \in \mathbb{R}^{m \times N}$ can be factorized as:

$$
\boldsymbol{X}=\boldsymbol{U} \boldsymbol{\Lambda} \boldsymbol{V}^{T}=\sum_{i=1}^{r} \lambda_{i} \boldsymbol{u}_{i} \boldsymbol{v}_{i}^{T}
$$

Review: Singular Value Decomposition (SVD)

- Computational tool underlying PCA
- Data matrix $\boldsymbol{X} \in \mathbb{R}^{m \times N}$ can be factorized as:

$$
\boldsymbol{X}=\boldsymbol{U} \boldsymbol{\Lambda} \boldsymbol{V}^{T}=\sum_{i=1}^{r} \lambda_{i} \boldsymbol{u}_{i} \boldsymbol{v}_{i}^{T}
$$

- r : rank of \boldsymbol{X}
- $\lambda_{1} \geq \lambda_{2} \geq \ldots \lambda_{r}>0$
- $\boldsymbol{U}^{T} \boldsymbol{U}=\boldsymbol{I}_{m}, \boldsymbol{V}^{T} \boldsymbol{V}=\boldsymbol{I}_{N}$

Review: Singular Value Decomposition (SVD)

- Computational tool underlying PCA
- Data matrix $\boldsymbol{X} \in \mathbb{R}^{m \times N}$ can be factorized as:

$$
\boldsymbol{X}=\boldsymbol{U} \boldsymbol{\Lambda} \boldsymbol{V}^{T}=\sum_{i=1}^{r} \lambda_{i} \boldsymbol{u}_{i} \boldsymbol{v}_{i}^{T}
$$

- r : rank of \boldsymbol{X}
- $\lambda_{1} \geq \lambda_{2} \geq \ldots \lambda_{r}>0$
- $\boldsymbol{U}^{T} \boldsymbol{U}=\boldsymbol{I}_{m}, \boldsymbol{V}^{T} \boldsymbol{V}=\boldsymbol{I}_{N}$
- Low-rank approximation:

$$
\boldsymbol{X}_{k}=\sum_{i=1}^{k} \lambda_{i} \boldsymbol{u}_{i} \boldsymbol{v}_{i}^{T}
$$

Review: Singular Value Decomposition (SVD)

- Computational tool underlying PCA
- Data matrix $\boldsymbol{X} \in \mathbb{R}^{m \times N}$ can be factorized as:

$$
\boldsymbol{X}=\boldsymbol{U} \boldsymbol{\Lambda} \boldsymbol{V}^{T}=\sum_{i=1}^{r} \lambda_{i} \boldsymbol{u}_{i} \boldsymbol{v}_{i}^{T}
$$

- r : rank of \boldsymbol{X}
- $\lambda_{1} \geq \lambda_{2} \geq \ldots \lambda_{r}>0$
- $\boldsymbol{U}^{T} \boldsymbol{U}=\boldsymbol{I}_{m}, \boldsymbol{V}^{T} \boldsymbol{V}=\boldsymbol{I}_{N}$
- Low-rank approximation:

$$
\boldsymbol{X}_{k}=\sum_{i=1}^{k} \lambda_{i} \boldsymbol{u}_{i} \boldsymbol{v}_{i}^{T}
$$

- Of all k-rank approximations, \boldsymbol{X}_{k} is optimal

$$
\boldsymbol{X}_{k}=\arg \min _{\operatorname{rank}(\tilde{\boldsymbol{X}})=k}\|\boldsymbol{X}-\tilde{\boldsymbol{X}}\|_{F}
$$

- Robustness to noise

Contribution of our work

- Feature projection
(1) Non-negative matrix approximation (NNMA)
(2) Oriented principal component analysis (OPCA)
- Nature of training basis
(1) Shared basis
(2) Class-specific basis

Alternatives to PCA for SAR ATR: Rationale

- Underlying generative model \rightarrow linear combination of basis functions with element-wise non-negative components
- U and V have both positive and negative elements in general \rightarrow interpretation of basis vectors difficult
- Orthogonality of PCA basis vectors unnatural for ATR problem

Alternatives to PCA for SAR ATR: Rationale

- Underlying generative model \rightarrow linear combination of basis functions with element-wise non-negative components
- U and V have both positive and negative elements in general \rightarrow interpretation of basis vectors difficult
- Orthogonality of PCA basis vectors unnatural for ATR problem
\rightarrow NNMA

Alternatives to PCA for SAR ATR: Rationale

- Underlying generative model \rightarrow linear combination of basis functions with element-wise non-negative components
- U and V have both positive and negative elements in general \rightarrow interpretation of basis vectors difficult
- Orthogonality of PCA basis vectors unnatural for ATR problem
\rightarrow NNMA
- First few principal components sufficient for classification when inter-class variations are dominant
- Incorporate class-specific information

Alternatives to PCA for SAR ATR: Rationale

- Underlying generative model \rightarrow linear combination of basis functions with element-wise non-negative components
- U and V have both positive and negative elements in general \rightarrow interpretation of basis vectors difficult
- Orthogonality of PCA basis vectors unnatural for ATR problem
\rightarrow NNMA
- First few principal components sufficient for classification when inter-class variations are dominant
- Incorporate class-specific information
\rightarrow OPCA
\rightarrow Class-specific basis representations

Non-negative Matrix Approximation (NNMA)

- Follows from non-negative matrix factorization (NMF) technique ${ }^{15}$

$$
X \approx W H ; \quad W, H \geq 0
$$

- Ready interpretation of W as additive basis
- Intuitively motivated by SAR imaging physics (non-negativity)
- Dimensionality reduction: k-rank non-negative matrix approximation

[^9]

Non-negative Matrix Approximation (NNMA)

- Follows from non-negative matrix factorization (NMF) technique ${ }^{15}$

$$
\boldsymbol{X} \approx \boldsymbol{W} \boldsymbol{H} ; \quad W, \boldsymbol{H} \geq \mathbf{0}
$$

- Ready interpretation of \boldsymbol{W} as additive basis
- Intuitively motivated by SAR imaging physics (non-negativity)
- Dimensionality reduction: k-rank non-negative matrix approximation

Figure: Illustration: NMF vs. PCA for image representation.

[^10]

Non-negative Matrix Approximation (NNMA)

Properties:

- Basis vectors \boldsymbol{w}_{i} not orthogonal by design
- Sparsity of W, H can be enforced additionally
- W, H not unique

Advantages over SVD/PCA for ATR:

- Easy interpretation of basis vectors
- No restriction of orthogonality

Non-negative Matrix Approximation (NNMA)

Alternating Least Squares ${ }^{16}$:

$$
\begin{array}{rc}
\min _{\boldsymbol{W}, \boldsymbol{H}} & \|\boldsymbol{X}-\boldsymbol{W} \boldsymbol{H}\|_{F}^{2} \\
\text { s.t. } & \boldsymbol{W}, \boldsymbol{H} \geq \mathbf{0}
\end{array}
$$

- Not jointly convex in $\boldsymbol{W}, \boldsymbol{H}$ (separably convex however)

[^11]

Non-negative Matrix Approximation (NNMA)

Alternating Least Squares ${ }^{16}$:

$$
\begin{array}{rc}
\min _{\boldsymbol{W}, \boldsymbol{H}} & \|\boldsymbol{X}-\boldsymbol{W} \boldsymbol{H}\|_{F}^{2} \\
\text { s.t. } & \boldsymbol{W}, \boldsymbol{H} \geq \mathbf{0}
\end{array}
$$

- Not jointly convex in $\boldsymbol{W}, \boldsymbol{H}$ (separably convex however)

Alternate formulation: Divergence update ${ }^{17}$

$$
\begin{aligned}
\min _{\boldsymbol{W}, \boldsymbol{H}} D(\boldsymbol{X} \| \boldsymbol{W} \boldsymbol{H})= & \sum_{i, j}\left(\boldsymbol{X}_{i j} \log \frac{\boldsymbol{X}_{i j}}{[\boldsymbol{W} \boldsymbol{H}]_{i j}}-\boldsymbol{X}_{i j}+[\boldsymbol{W} \boldsymbol{H}]_{i j}\right) \\
\text { s.t. } & \boldsymbol{W}, \boldsymbol{H} \geq \mathbf{0}
\end{aligned}
$$

[^12]
Non-negative Matrix Approximation (NNMA)

Alternating Least Squares ${ }^{16}$:

$$
\begin{array}{rc}
\min _{\boldsymbol{W}, \boldsymbol{H}} & \|\boldsymbol{X}-\boldsymbol{W} \boldsymbol{H}\|_{F}^{2} \\
\text { s.t. } & \boldsymbol{W}, \boldsymbol{H} \geq \mathbf{0}
\end{array}
$$

- Not jointly convex in $\boldsymbol{W}, \boldsymbol{H}$ (separably convex however)

Alternate formulation: Divergence update ${ }^{17}$

$$
\begin{aligned}
\min _{\boldsymbol{W}, \boldsymbol{H}} D(\boldsymbol{X} \| \boldsymbol{W} \boldsymbol{H})= & \sum_{i, j}\left(\boldsymbol{X}_{i j} \log \frac{\boldsymbol{X}_{i j}}{[\boldsymbol{W} \boldsymbol{H}]_{i j}}-\boldsymbol{X}_{i j}+[\boldsymbol{W} \boldsymbol{H}]_{i j}\right) \\
\text { s.t. } & \boldsymbol{W}, \boldsymbol{H} \geq \mathbf{0}
\end{aligned}
$$

Feature extraction (corresponding to target vector \boldsymbol{y}):

$$
\boldsymbol{h}=\min _{h}\|\boldsymbol{y}-\boldsymbol{W} \boldsymbol{h}\|_{2}, \text { s.t. } \boldsymbol{h} \geq 0
$$

[^13]

Oriented Principal Component Analysis (OPCA) ${ }^{18}$

- Generalization of PCA for binary classification
- Maximizes the signal-to-noise ratio between a pair of stochastic signals u, v :

$$
J_{\mathrm{OPCA}}(\boldsymbol{w})=\frac{\boldsymbol{w}^{T} \boldsymbol{R}_{u} \boldsymbol{w}}{\boldsymbol{w}^{T} \boldsymbol{R}_{v} \boldsymbol{w}},
$$

where $\boldsymbol{R}_{u}=E\left\{\boldsymbol{u} \boldsymbol{u}^{T}\right\}, \boldsymbol{R}_{v}=E\left\{\boldsymbol{v} \boldsymbol{v}^{T}\right\}$

[^14]

Oriented Principal Component Analysis (OPCA) ${ }^{18}$

- Generalization of PCA for binary classification
- Maximizes the signal-to-noise ratio between a pair of stochastic signals u, \boldsymbol{v} :

$$
J_{\mathrm{OPCA}}(\boldsymbol{w})=\frac{\boldsymbol{w}^{T} \boldsymbol{R}_{u} \boldsymbol{w}}{\boldsymbol{w}^{T} \boldsymbol{R}_{v} \boldsymbol{w}},
$$

where $\boldsymbol{R}_{u}=E\left\{\boldsymbol{u} \boldsymbol{u}^{T}\right\}, \boldsymbol{R}_{v}=E\left\{\boldsymbol{v} \boldsymbol{v}^{T}\right\}$

- Maximizer $\boldsymbol{w}=\boldsymbol{e}_{1}$ of $J_{\mathrm{OPCA}} \rightarrow$ principal oriented component; generalized eigenvector of $\left[\boldsymbol{R}_{u}, \boldsymbol{R}_{v}\right]$

[^15]

Oriented Principal Component Analysis (OPCA) ${ }^{18}$

- Generalization of PCA for binary classification
- Maximizes the signal-to-noise ratio between a pair of stochastic signals u, \boldsymbol{v} :

$$
J_{\mathrm{OPCA}}(\boldsymbol{w})=\frac{\boldsymbol{w}^{T} \boldsymbol{R}_{u} \boldsymbol{w}}{\boldsymbol{w}^{T} \boldsymbol{R}_{v} \boldsymbol{w}},
$$

where $\boldsymbol{R}_{u}=E\left\{\boldsymbol{u} \boldsymbol{u}^{T}\right\}, \boldsymbol{R}_{v}=E\left\{\boldsymbol{v} \boldsymbol{v}^{T}\right\}$

- Maximizer $\boldsymbol{w}=\boldsymbol{e}_{1}$ of $J_{\mathrm{OPCA}} \rightarrow$ principal oriented component; generalized eigenvector of $\left[\boldsymbol{R}_{u}, \boldsymbol{R}_{v}\right]$
- Oriented components $\boldsymbol{e}_{2}, \boldsymbol{e}_{3}, \ldots, \boldsymbol{e}_{m}$: maximize $J_{\text {OPCA }}$ subject to

$$
\boldsymbol{e}_{i}^{T} \boldsymbol{R}_{u} \boldsymbol{e}_{j}=\boldsymbol{e}_{i}^{T} \boldsymbol{R}_{v} \boldsymbol{e}_{j}=0, i \neq j
$$

- Identical to PCA if v is white noise

[^16]

Oriented Principal Component Analysis (OPCA) ${ }^{18}$

- Generalization of PCA for binary classification
- Maximizes the signal-to-noise ratio between a pair of stochastic signals u, v :

$$
J_{\mathrm{OPCA}}(\boldsymbol{w})=\frac{\boldsymbol{w}^{T} \boldsymbol{R}_{u} \boldsymbol{w}}{\boldsymbol{w}^{T} \boldsymbol{R}_{v} \boldsymbol{w}},
$$

where $\boldsymbol{R}_{u}=E\left\{\boldsymbol{u} \boldsymbol{u}^{T}\right\}, \boldsymbol{R}_{v}=E\left\{\boldsymbol{v} \boldsymbol{v}^{T}\right\}$

- Maximizer $\boldsymbol{w}=\boldsymbol{e}_{1}$ of $J_{\mathrm{OPCA}} \rightarrow$ principal oriented component; generalized eigenvector of $\left[\boldsymbol{R}_{u}, \boldsymbol{R}_{v}\right]$
- Oriented components $\boldsymbol{e}_{2}, \boldsymbol{e}_{3}, \ldots, \boldsymbol{e}_{m}$: maximize $J_{\text {OPCA }}$ subject to

$$
\boldsymbol{e}_{i}^{T} \boldsymbol{R}_{u} \boldsymbol{e}_{j}=\boldsymbol{e}_{i}^{T} \boldsymbol{R}_{v} \boldsymbol{e}_{j}=0, i \neq j
$$

- Identical to PCA if v is white noise
- Application to SAR ATR: signal \boldsymbol{v} chosen from complementary class

[^17]05/10/2012

Oriented Principal Component Analysis (OPCA)

Class-specific basis:

- OPCA inherently designed for binary classification
- K-class scenario: solve K different binary problems
- For the i-th such problem:
- \boldsymbol{R}_{u} : sample covariance matrix of training images from class i
- \boldsymbol{R}_{v} : sample covariance matrix of representative training images chosen from all other classes

Shared training vs. class-specific training

Shared basis:

- Data matrix contains training from all classes
- Assumption: inter-class variations dominant compared to intra-class

Shared training vs. class-specific training

Shared basis:

- Data matrix contains training from all classes
- Assumption: inter-class variations dominant compared to intra-class

Class-specific basis:

- Separate projection matrix \boldsymbol{A}_{i} for each class $i=1, \ldots, K$
- Projection matrix $A=\left[\begin{array}{llll}A_{1} & A_{2} & \ldots & A_{K}\end{array}\right]$

Shared training vs. class-specific training

Shared basis:

- Data matrix contains training from all classes
- Assumption: inter-class variations dominant compared to intra-class

Class-specific basis:

- Separate projection matrix A_{i} for each class $i=1, \ldots, K$
- Projection matrix $A=\left[\begin{array}{llll}A_{1} & A_{2} & \ldots & A_{K}\end{array}\right]$
- More discriminative than shared basis
- Sensitive to scenario of inadequate training
- Possibly higher feature dimension \rightarrow computational cost

Classifier: Support Vector Machine (SVM) ${ }^{21}$

$$
f(\boldsymbol{x})=\sum_{i=1}^{N} \alpha_{i} y_{i} K\left(\boldsymbol{s}_{i}, \boldsymbol{x}\right)+b
$$

- Widely used in ATR problems ${ }^{19,20}$

[^18]

Overall classification framework

- Shared training basis: PCA and NNMA
- Class-specific training basis: PCA, NNMA, OPCA
- Linear SVM: representative of state-of-the-art classifiers

Experimental set-up

- MSTAR database: one-foot resolution X-band SAR images
- Five target classes
(1) T-72 tanks
(2) BMP-2 infantry fighting vehicles
(3) BTR-70 armored personnel carriers
(4) ZIL131 trucks
(5) D7 tractors

Target class	Serial number	\# Training images	\# Test images
BMP-2	SN_C21	233	196
	SN_9563	233	195
	SN_9566	232	196
BTR-70	SN_C71	233	196
T-72	SN_132	232	196
	SN_812	231	195
	SN_S7	228	191
ZIL131	-	299	274
D7	-	299	274

Table: Target classes in the experiment.

Experimental set-up

- Training images: 17° depression angle
- Test images: 15° depression angle
- Images cropped to 64×64 pixels (i.e. vectorized data in \mathbb{R}^{4096})
- Pose: varies from 0° to 360°
- Number of basis vectors: 750

Results: Classification performance

Table: Confusion matrix: Shared PCA basis.

Class	BMP-2	BTR-70	T-72	ZIL131	D7
BMP-2	$\mathbf{0 . 8 4}$	0.06	0.04	0.02	0.04
BTR-70	0.05	$\mathbf{0 . 8 7}$	0.03	0.02	0.03
T-72	0.03	0.07	$\mathbf{0 . 8 3}$	0.03	0.04
ZIL131	0.05	0.03	0.02	$\mathbf{0 . 8 4}$	0.06
D7	0.06	0.02	0.04	0.06	$\mathbf{0 . 8 2}$

Table: Confusion matrix: Shared NNMA basis.

Class	BMP-2	BTR-70	T-72	ZIL131	D7
BMP-2	$\mathbf{0 . 8 6}$	0.05	0.02	0.05	0.02
BTR-70	0.07	$\mathbf{0 . 8 8}$	0.04	0.01	0.0
T-72	0.03	0.04	$\mathbf{0 . 8 6}$	0.02	0.05
ZIL131	0.01	0.06	0.05	$\mathbf{0 . 8 7}$	0.01
D7	0.04	0.02	0.06	0.04	$\mathbf{0 . 8 4}$

Results: Classification performance

Table: Class-specific PCA basis.

Class	BMP-2	BTR-70	T-72	ZIL131	D7
BMP-2	$\mathbf{0 . 8 6}$	0.05	0.04	0.02	0.03
BTR-70	0.04	$\mathbf{0 . 8 8}$	0.04	0.03	0.01
T-72	0.04	0.05	$\mathbf{0 . 8 5}$	0.02	0.04
ZIL131	0.02	0.02	0.06	$\mathbf{0 . 8 6}$	0.04
D7	0.01	0.01	0.07	0.06	$\mathbf{0 . 8 5}$

Table: Class-specific NNMA basis.

Class	BMP-2	BTR-70	T-72	ZIL131	D7
BMP-2	$\mathbf{0 . 8 8}$	0.05	0.02	0.01	0.04
BTR-70	0.03	$\mathbf{0 . 9 0}$	0.02	0.03	0.02
T-72	0.02	0.05	$\mathbf{0 . 8 7}$	0.04	0.02
ZIL131	0.04	0.02	0.03	$\mathbf{0 . 8 9}$	0.02
D7	0.02	0.03	0.04	0.04	$\mathbf{0 . 8 7}$

Table: Class-specific OPCA basis.

Class	BMP-2	BTR-70	T-72	ZIL131	D7
BMP-2	$\mathbf{0 . 9 1}$	0.03	0.04	0.01	0.01
BTR-70	0.04	$\mathbf{0 . 9 1}$	0.01	0.03	0.01
T-72	0.02	0.05	$\mathbf{0 . 8 8}$	0.02	0.03
ZIL131	0.03	0.01	0.03	$\mathbf{0 . 9 0}$	0.03
D7	0.03	0.03	0.02	0.03	$\mathbf{0 . 8 9}$

Conclusions

- Proposed alternatives to PCA-based feature extraction in ATR problems
- NNMA: Non-negativity motivated by underlying SAR image physics
- OPCA: Captures inter-class variability better

Conclusions

- Proposed alternatives to PCA-based feature extraction in ATR problems
- NNMA: Non-negativity motivated by underlying SAR image physics
- OPCA: Captures inter-class variability better
- Future work:
- NNMA/OPCA features for meta-classification.

Thank You
Questions?

[^0]: ${ }^{1}$ Bhanu et al., IEEE AES Systems Magazine, 1993

[^1]: ${ }^{2}$ Olson et al., IEEE Trans. Image Process., 1997
 ${ }^{3}$ Bhatnagar et al., IEEE ICASSP, 1998
 ${ }^{4}$ Casasent et al., Neural Networks, 2005
 ${ }^{5}$ Daniell et al., Optical Engineering, 1992
 ${ }^{6}$ Zhao et al., IEEE Trans. Aerosp. Electron. Syst., 2001
 05/10/2012

[^2]: ${ }^{2}$ Olson et al., IEEE Trans. Image Process., 1997
 $3_{\text {Bhatnagar et al., IEEE ICASSP, } 1998}$
 ${ }^{4}$ Casasent et al., Neural Networks, 2005
 ${ }^{5}$ Daniell et al., Optical Engineering, 1992
 ${ }^{6}$ Zhao et al., IEEE Trans. Aerosp. Electron. Syst., 2001

[^3]: ${ }^{7}$ Rizvi and Nasrabadi, Applied Imagery Pattern Recognition Workshop, 2003
 ${ }^{8}$ Gomes et al., IEEE Radar Conf., 2008
 ${ }^{9}$ Sun et al., IEEE Trans. Aerosp. Electron. Syst., 2007
 ${ }^{10}$ Srinivas et al., IEEE Radar Conf., 2011
 ${ }^{11}$ Srinivas et al., IEEE Int. Conf. Image Processing, 2011
 05/10/2012

[^4]: ${ }^{7}$ Rizvi and Nasrabadi, Applied Imagery Pattern Recognition Workshop, 2003
 ${ }^{8}$ Gomes et al., IEEE Radar Conf., 2008
 ${ }^{9}$ Sun et al., IEEE Trans. Aerosp. Electron. Syst., 2007
 ${ }^{10}$ Srinivas et al., IEEE Radar Conf., 2011
 ${ }^{11}$ Srinivas et al., IEEE Int. Conf. Image Processing, 2011

[^5]: 12 Jolliffe, Principal Component Analysis, Springer, 1986
 05/10/2012

[^6]: 12 Jolliffe, Principal Component Analysis, Springer, 1986
 05/10/2012

[^7]: 12 Jolliffe, Principal Component Analysis, Springer, 1986
 05/10/2012

[^8]: 13 Turk and Pentland, IEEE Conf. CVPR, 1991
 14 Bhatnagar et al., IEEE ICASSP, 1998

[^9]: 15 Lee and Seung, Nature, 1999
 05/10/2012

[^10]: ${ }^{15}$ Lee and Seung, Nature, 1999
 05/10/2012

[^11]: 16 Paatero and Tapper, 1994
 ${ }^{17}$ Lee and Seung, 2000
 05/10/2012

[^12]: ${ }^{16}$ Paatero and Tapper, 1994
 ${ }^{17}$ Lee and Seung, 2000

[^13]: ${ }^{16}$ Paatero and Tapper, 1994
 ${ }^{17}$ Lee and Seung, 2000
 05/10/2012

[^14]: 18 Diamantaras and Kung, 1996
 05/10/2012

[^15]: 18 Diamantaras and Kung, 1996
 05/10/2012

[^16]: 18 Diamantaras and Kung, 1996
 05/10/2012

[^17]: ${ }^{18}$ Diamantaras and Kung, 1996

[^18]: ${ }^{19}$ Zhao and Principe, IEEE Trans. Aerosp. Electron. Syst., 2001
 ${ }^{20}$ Casasent and Wang, Neural Networks, 2005
 ${ }^{21}$ Vapnik, The nature of statistical learning theory, 1995
 05/10/2012

