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Automatic Target Recognition (ATR)
Exploit imagery from diverse sensed sources for automatic target
identification1

Variety of sensors: synthetic aperture radar (SAR), inverse SAR
(ISAR), forward looking infra-red (FLIR), hyperspectral

Diverse scenarios: air-to-ground, air-to-air, surface-to-surface

Figure: Schematic of ATR framework. The classification and recognition stages
assign an input image/ feature to one of many target classes.

1
Bhanu et al., IEEE AES Systems Magazine, 1993
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Target classification

Two-stage framework:
1 Feature extraction from sensed imagery

Geometric feature-point descriptors2

Eigen-templates3

Transform domain coefficients: wavelets4

2 Decision engine which performs class assignment

Linear and quadratic discriminant analysis

Neural networks5

Support vector machines (SVM)6

2
Olson et al., IEEE Trans. Image Process., 1997

3
Bhatnagar et al., IEEE ICASSP, 1998

4
Casasent et al., Neural Networks, 2005

5
Daniell et al., Optical Engineering, 1992

6
Zhao et al., IEEE Trans. Aerosp. Electron. Syst., 2001
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Recent research trends: Fusion

Exploit complementary yet correlated information offered by
different sets of features/classifiers

Ensemble classifiers7

Voting strategy8

Boosting9

Meta-classification10

Probabilistic graphical models for feature fusion11 (boosting on
graphs which model low-level features)

7
Rizvi and Nasrabadi, Applied Imagery Pattern Recognition Workshop, 2003

8
Gomes et al., IEEE Radar Conf., 2008

9
Sun et al., IEEE Trans. Aerosp. Electron. Syst., 2007

10
Srinivas et al., IEEE Radar Conf., 2011

11
Srinivas et al., IEEE Int. Conf. Image Processing, 2011
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Motivation: Feature extraction

Feature extraction → projection to lower dimensional feature space

1 Inherent low-dimensional space that captures image information with
minimal redundancy12

2 Computational benefits for real-time applications

Optimization problem:

xxx = arg min
x̂̂x̂x
‖yyy −AAAx̂̂x̂x‖2

yyy: target image in Rm

xxx: corresponding feature vector in Rn, n < m

AAA: projection matrix in Rm×n → collection of n basis vectors, each
in Rm

How to choose AAA?

12
Jolliffe, Principal Component Analysis, Springer, 1986
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Review: Principal Component Analysis (PCA)
Statistical tool for dimensionality reduction via change of basis

Modeling an observation of physical phenomena as a linear
combination of basis vectors

Eigenvectors of data covariance matrix form the projection basis

Applications in image classification: eigenfaces for face
recognition13, eigen-templates for ATR14

13
Turk and Pentland, IEEE Conf. CVPR, 1991

14
Bhatnagar et al., IEEE ICASSP, 1998
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Review: Singular Value Decomposition (SVD)
Computational tool underlying PCA

Data matrix XXX ∈ Rm×N can be factorized as:

XXX = UUUΛΛΛVVV T =

r∑
i=1

λiuuuivvv
T
i

r: rank of XXX

λ1 ≥ λ2 ≥ . . . λr > 0

UUUTUUU = IIIm, VVV TVVV = IIIN

Low-rank approximation:

XXXk =
k∑

i=1

λiuuuivvv
T
i

Of all k-rank approximations, XXXk is optimal

XXXk = arg min
rank(X̃XX)=k

‖XXX − X̃XX‖F

Robustness to noise
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Contribution of our work

Feature projection

1 Non-negative matrix approximation (NNMA)

2 Oriented principal component analysis (OPCA)

Nature of training basis

1 Shared basis

2 Class-specific basis

05/10/2012 8



Alternatives to PCA for SAR ATR: Rationale

Underlying generative model → linear combination of basis functions
with element-wise non-negative components

UUU and VVV have both positive and negative elements in general →
interpretation of basis vectors difficult

Orthogonality of PCA basis vectors unnatural for ATR problem

→ NNMA

First few principal components sufficient for classification when
inter-class variations are dominant

Incorporate class-specific information

→ OPCA

→ Class-specific basis representations
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Non-negative Matrix Approximation (NNMA)
Follows from non-negative matrix factorization (NMF) technique15

XXX ≈WWWHHH; WWW,HHH ≥ 000

Ready interpretation of WWW as additive basis

Intuitively motivated by SAR imaging physics (non-negativity)

Dimensionality reduction: k-rank non-negative matrix approximation

Figure: Illustration: NMF vs. PCA for image representation.

15
Lee and Seung, Nature, 1999
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Non-negative Matrix Approximation (NNMA)

Properties:

Basis vectors wwwi not orthogonal by design

Sparsity of WWW,HHH can be enforced additionally

WWW,HHH not unique

Advantages over SVD/PCA for ATR:

Easy interpretation of basis vectors

No restriction of orthogonality

05/10/2012 11



Non-negative Matrix Approximation (NNMA)
Alternating Least Squares16:

min
WWW,HHH

‖XXX −WWWHHH‖2F

s.t. WWW,HHH ≥ 000

Not jointly convex in WWW,HHH (separably convex however)

Alternate formulation: Divergence update17

min
WWW,HHH

D(XXX||WWWHHH) =
∑
i,j

(
XXXij log

XXXij

[WWWHHH]ij
−XXXij + [WWWHHH]ij

)
s.t. WWW,HHH ≥ 000

Feature extraction (corresponding to target vector yyy):

hhh = min
h
‖yyy −WWWhhh‖2, s.t. hhh ≥ 0

16
Paatero and Tapper, 1994

17
Lee and Seung, 2000
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Oriented Principal Component Analysis (OPCA)18

Generalization of PCA for binary classification

Maximizes the signal-to-noise ratio between a pair of stochastic
signals uuu,vvv:

JOPCA(www) =
wwwTRRRuwww

wwwTRRRvwww
,

where RRRu = E{uuuuuuT },RRRv = E{vvvvvvT }

Maximizer www = eee1 of JOPCA → principal oriented component;
generalized eigenvector of [RRRu,RRRv]

Oriented components eee2, eee3, . . . , eeem: maximize JOPCA subject to

eeeTi RRRueeej = eeeTi RRRveeej = 0, i 6= j.

Identical to PCA if vvv is white noise

Application to SAR ATR: signal vvv chosen from complementary class

18
Diamantaras and Kung, 1996
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Oriented Principal Component Analysis (OPCA)

Class-specific basis:

OPCA inherently designed for binary classification

K-class scenario: solve K different binary problems

For the i-th such problem:

RRRu: sample covariance matrix of training images from class i

RRRv: sample covariance matrix of representative training images
chosen from all other classes

05/10/2012 14



Shared training vs. class-specific training

Shared basis:

Data matrix contains training from all classes

Assumption: inter-class variations dominant compared to intra-class

Class-specific basis:

Separate projection matrix AAAi for each class i = 1, . . . ,K

Projection matrix AAA = [AAA1 AAA2 . . .AAAK ]

More discriminative than shared basis

Sensitive to scenario of inadequate training

Possibly higher feature dimension → computational cost
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Classifier: Support Vector Machine (SVM)21

f(xxx) =

N∑
i=1

αiyiK(sssi,xxx) + b

Widely used in ATR problems19,20

19
Zhao and Principe, IEEE Trans. Aerosp. Electron. Syst., 2001

20
Casasent and Wang, Neural Networks, 2005

21
Vapnik, The nature of statistical learning theory, 1995
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Overall classification framework

Shared training basis: PCA and NNMA

Class-specific training basis: PCA, NNMA, OPCA

Linear SVM: representative of state-of-the-art classifiers

05/10/2012 17



Experimental set-up

MSTAR database: one-foot resolution X-band SAR images

Five target classes
1 T-72 tanks
2 BMP-2 infantry fighting vehicles
3 BTR-70 armored personnel carriers
4 ZIL131 trucks
5 D7 tractors

Target class Serial number # Training images # Test images
BMP-2 SN C21 233 196

SN 9563 233 195
SN 9566 232 196

BTR-70 SN C71 233 196
T-72 SN 132 232 196

SN 812 231 195
SN S7 228 191

ZIL131 - 299 274
D7 - 299 274

Table: Target classes in the experiment.

05/10/2012 18



Experimental set-up

Training images: 17◦ depression angle

Test images: 15◦ depression angle

Images cropped to 64× 64 pixels (i.e. vectorized data in R4096)

Pose: varies from 0◦ to 360◦

Number of basis vectors: 750

05/10/2012 19



Results: Classification performance

Table: Confusion matrix: Shared PCA basis.

Class BMP-2 BTR-70 T-72 ZIL131 D7
BMP-2 0.84 0.06 0.04 0.02 0.04
BTR-70 0.05 0.87 0.03 0.02 0.03

T-72 0.03 0.07 0.83 0.03 0.04
ZIL131 0.05 0.03 0.02 0.84 0.06

D7 0.06 0.02 0.04 0.06 0.82

Table: Confusion matrix: Shared NNMA basis.

Class BMP-2 BTR-70 T-72 ZIL131 D7
BMP-2 0.86 0.05 0.02 0.05 0.02
BTR-70 0.07 0.88 0.04 0.01 0.0

T-72 0.03 0.04 0.86 0.02 0.05
ZIL131 0.01 0.06 0.05 0.87 0.01

D7 0.04 0.02 0.06 0.04 0.84
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Results: Classification performance

Table: Class-specific PCA basis.
Class BMP-2 BTR-70 T-72 ZIL131 D7

BMP-2 0.86 0.05 0.04 0.02 0.03
BTR-70 0.04 0.88 0.04 0.03 0.01

T-72 0.04 0.05 0.85 0.02 0.04
ZIL131 0.02 0.02 0.06 0.86 0.04

D7 0.01 0.01 0.07 0.06 0.85

Table: Class-specific NNMA basis.
Class BMP-2 BTR-70 T-72 ZIL131 D7

BMP-2 0.88 0.05 0.02 0.01 0.04
BTR-70 0.03 0.90 0.02 0.03 0.02

T-72 0.02 0.05 0.87 0.04 0.02
ZIL131 0.04 0.02 0.03 0.89 0.02

D7 0.02 0.03 0.04 0.04 0.87

Table: Class-specific OPCA basis.
Class BMP-2 BTR-70 T-72 ZIL131 D7

BMP-2 0.91 0.03 0.04 0.01 0.01
BTR-70 0.04 0.91 0.01 0.03 0.01

T-72 0.02 0.05 0.88 0.02 0.03
ZIL131 0.03 0.01 0.03 0.90 0.03

D7 0.03 0.03 0.02 0.03 0.89
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Conclusions

Proposed alternatives to PCA-based feature extraction in ATR
problems

NNMA: Non-negativity motivated by underlying SAR image physics

OPCA: Captures inter-class variability better

Future work:

NNMA/OPCA features for meta-classification.
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Thank You

Questions?
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