A Comparative Study of Basis Selection Techniques for SAR Automatic Target Recognition

Umamahesh Srinivas[†] Vishal Monga[†] Vahid Riasati[‡] [†]Pennsylvania State University University Park, PA
[‡]MacAulay-Brown Inc. Dayton, OH
^{*}

PENNSTATE PAL @

IEEE Radarcon 2012

May 10, 2012

Automatic Target Recognition (ATR)

- Exploit imagery from diverse sensed sources for automatic target identification¹
- Variety of sensors: synthetic aperture radar (SAR), inverse SAR (ISAR), forward looking infra-red (FLIR), hyperspectral
- Diverse scenarios: air-to-ground, air-to-air, surface-to-surface

Figure: Schematic of ATR framework. The classification and recognition stages assign an input image/ feature to one of many target classes.

¹Bhanu et al., IEEE AES Systems Magazine, 1993

Target classification

Two-stage framework:

Feature extraction from sensed imagery

- Geometric feature-point descriptors²
- Eigen-templates³
- Transform domain coefficients: wavelets⁴

²Olson et al., IEEE Trans. Image Process., 1997

- ³Bhatnagar et al., IEEE ICASSP, 1998
- ⁴Casasent et al., Neural Networks, 2005
- ⁵Daniell et al., Optical Engineering, 1992
- ⁶Zhao et al., IEEE Trans. Aerosp. Electron. Syst., 2001

Target classification

Two-stage framework:

Feature extraction from sensed imagery

- Geometric feature-point descriptors²
- Eigen-templates³
- Transform domain coefficients: wavelets⁴

Decision engine which performs class assignment

- Linear and quadratic discriminant analysis
- Neural networks⁵
- Support vector machines (SVM)⁶

⁶Zhao et al., IEEE Trans. Aerosp. Electron. Syst., 2001

²Olson et al., IEEE Trans, Image Process., 1997

³Bhatnagar et al., IEEE ICASSP, 1998

⁴Casasent et al., Neural Networks, 2005

⁵Daniell et al., Optical Engineering, 1992

Recent research trends: Fusion

- Exploit complementary yet correlated information offered by different sets of features/classifiers
 - Ensemble classifiers⁷
 - Voting strategy⁸
 - Boosting⁹

⁷Rizvi and Nasrabadi, Applied Imagery Pattern Recognition Workshop, 2003

⁸Gomes et al., IEEE Radar Conf., 2008

⁹Sun et al., IEEE Trans. Aerosp. Electron. Syst., 2007

¹⁰Srinivas et al., IEEE Radar Conf., 2011

¹¹Srinivas et al., IEEE Int. Conf. Image Processing, 2011

Recent research trends: Fusion

- Exploit complementary yet correlated information offered by different sets of features/classifiers
 - Ensemble classifiers⁷
 - Voting strategy⁸
 - Boosting⁹
 - Meta-classification¹⁰
 - Probabilistic graphical models for feature fusion¹¹ (boosting on graphs which model low-level features)

- ¹⁰Srinivas et al., IEEE Radar Conf., 2011
- ¹¹Srinivas et al., IEEE Int. Conf. Image Processing, 2011

⁷Rizvi and Nasrabadi, Applied Imagery Pattern Recognition Workshop, 2003

⁸Gomes et al., IEEE Radar Conf., 2008

⁹Sun et al., IEEE Trans. Aerosp. Electron. Syst., 2007

Motivation: Feature extraction

- \bullet Feature extraction \rightarrow projection to lower dimensional feature space
 - Inherent low-dimensional space that captures image information with minimal redundancy¹²
 - Ocmputational benefits for real-time applications

 $^{^{12}}$ Jolliffe, Principal Component Analysis, Springer, 1986

Motivation: Feature extraction

- \bullet Feature extraction \rightarrow projection to lower dimensional feature space
 - Inherent low-dimensional space that captures image information with minimal redundancy¹²
 - Omputational benefits for real-time applications
- Optimization problem:

$$\boldsymbol{x} = \arg\min_{\boldsymbol{\hat{x}}} \|\boldsymbol{y} - \boldsymbol{A}\boldsymbol{\hat{x}}\|_2$$

- \boldsymbol{y} : target image in \mathbb{R}^m
- \boldsymbol{x} : corresponding feature vector in $\mathbb{R}^n, n < m$
- A: projection matrix in $\mathbb{R}^{m\times n} \to$ collection of n basis vectors, each in \mathbb{R}^m

 12 Jolliffe, Principal Component Analysis, Springer, 1986

Motivation: Feature extraction

- \bullet Feature extraction \rightarrow projection to lower dimensional feature space
 - Inherent low-dimensional space that captures image information with minimal redundancy¹²
 - Omputational benefits for real-time applications
- Optimization problem:

$$oldsymbol{x} = rgmin_{oldsymbol{\hat{x}}} \|oldsymbol{y} - oldsymbol{A}oldsymbol{\hat{x}}\|_2$$

- \boldsymbol{y} : target image in \mathbb{R}^m
- \boldsymbol{x} : corresponding feature vector in $\mathbb{R}^n, n < m$
- A: projection matrix in $\mathbb{R}^{m\times n}\to$ collection of n basis vectors, each in \mathbb{R}^m
- How to choose A?

¹² Jolliffe, Principal Component Analysis, Springer, 1986

Review: Principal Component Analysis (PCA)

- Statistical tool for dimensionality reduction via change of basis
- Modeling an observation of physical phenomena as a linear combination of basis vectors

- Eigenvectors of data covariance matrix form the projection basis
- Applications in image classification: eigenfaces for face recognition¹³, eigen-templates for ATR¹⁴

 13 Turk and Pentland, IEEE Conf. CVPR, 1991

¹⁴Bhatnagar et al., IEEE ICASSP, 1998

- Computational tool underlying PCA
- Data matrix $oldsymbol{X} \in \mathbb{R}^{m imes N}$ can be factorized as:

$$oldsymbol{X} = oldsymbol{U}oldsymbol{\Lambda}oldsymbol{V}^T = \sum_{i=1}^r \lambda_ioldsymbol{u}_ioldsymbol{v}_i^T$$

- Computational tool underlying PCA
- Data matrix $oldsymbol{X} \in \mathbb{R}^{m imes N}$ can be factorized as:

$$oldsymbol{X} = oldsymbol{U} oldsymbol{\Lambda} oldsymbol{V}^T = \sum_{i=1}^{r} \lambda_i oldsymbol{u}_i oldsymbol{v}_i^T$$

- r: rank of X
- $\lambda_1 \ge \lambda_2 \ge \dots \lambda_r > 0$
- $\boldsymbol{U}^T \boldsymbol{U} = \boldsymbol{I}_m, \, \boldsymbol{V}^T \boldsymbol{V} = \boldsymbol{I}_N$

- Computational tool underlying PCA
- Data matrix $oldsymbol{X} \in \mathbb{R}^{m imes N}$ can be factorized as:

$$oldsymbol{X} = oldsymbol{U} oldsymbol{\Lambda} oldsymbol{V}^T = \sum_{i=1}^r \lambda_i oldsymbol{u}_i oldsymbol{v}_i^T$$

- r: rank of X
- $\lambda_1 \geq \lambda_2 \geq \ldots \lambda_r > 0$
- $\boldsymbol{U}^T \boldsymbol{U} = \boldsymbol{I}_m, \, \boldsymbol{V}^T \boldsymbol{V} = \boldsymbol{I}_N$
- Low-rank approximation:

$$oldsymbol{X}_{oldsymbol{k}} = \sum_{i=1}^{oldsymbol{k}} \lambda_i oldsymbol{u}_i oldsymbol{v}_i^T$$

- Computational tool underlying PCA
- Data matrix $oldsymbol{X} \in \mathbb{R}^{m imes N}$ can be factorized as:

$$oldsymbol{X} = oldsymbol{U} oldsymbol{\Lambda} oldsymbol{V}^T = \sum_{i=1}^r \lambda_i oldsymbol{u}_i oldsymbol{v}_i^T$$

- r: rank of X
- $\lambda_1 \geq \lambda_2 \geq \ldots \lambda_r > 0$
- $\boldsymbol{U}^T \boldsymbol{U} = \boldsymbol{I}_m, \, \boldsymbol{V}^T \boldsymbol{V} = \boldsymbol{I}_N$
- Low-rank approximation:

$$oldsymbol{X}_{oldsymbol{k}} = \sum_{i=1}^k \lambda_i oldsymbol{u}_i oldsymbol{v}_i^T$$

• Of all k-rank approximations, Xk is optimal

$$\boldsymbol{X}_k = \arg\min_{\mathsf{rank}(\tilde{\boldsymbol{X}})=k} \|\boldsymbol{X} - \tilde{\boldsymbol{X}}\|_F$$

 Robustness to noise 05/10/2012

Contribution of our work

• Feature projection

Oriented principal component analysis (OPCA)

- Nature of training basis
 - Shared basis

- Underlying generative model \rightarrow linear combination of basis functions with element-wise non-negative components
- $m{U}$ and $m{V}$ have both positive and negative elements in general ightarrow interpretation of basis vectors difficult
- Orthogonality of PCA basis vectors unnatural for ATR problem

- Underlying generative model \rightarrow linear combination of basis functions with element-wise non-negative components
- $m{U}$ and $m{V}$ have both positive and negative elements in general ightarrow interpretation of basis vectors difficult
- Orthogonality of PCA basis vectors unnatural for ATR problem
- $\rightarrow \mathsf{NNMA}$

- Underlying generative model \rightarrow linear combination of basis functions with element-wise non-negative components
- $m{U}$ and $m{V}$ have both positive and negative elements in general ightarrow interpretation of basis vectors difficult
- Orthogonality of PCA basis vectors unnatural for ATR problem
- $\rightarrow \mathsf{NNMA}$
 - First few principal components sufficient for classification when inter-class variations are dominant
 - Incorporate class-specific information

- Underlying generative model \rightarrow linear combination of basis functions with element-wise non-negative components
- $m{U}$ and $m{V}$ have both positive and negative elements in general ightarrow interpretation of basis vectors difficult
- Orthogonality of PCA basis vectors unnatural for ATR problem
- $\rightarrow \mathsf{NNMA}$
 - First few principal components sufficient for classification when inter-class variations are dominant
 - Incorporate class-specific information
- $\rightarrow \mathsf{OPCA}$
- \rightarrow Class-specific basis representations

Non-negative Matrix Approximation (NNMA)

Follows from non-negative matrix factorization (NMF) technique¹⁵

 $X \approx WH; \quad W, H \ge 0$

- Ready interpretation of ${oldsymbol W}$ as additive basis
- Intuitively motivated by SAR imaging physics (non-negativity)
- Dimensionality reduction: k-rank non-negative matrix approximation

15 Lee and Seung, Nature, 1999

Non-negative Matrix Approximation (NNMA)

Follows from non-negative matrix factorization (NMF) technique¹⁵

 $X \approx WH; \quad W, H \ge 0$

- Ready interpretation of ${oldsymbol W}$ as additive basis
- Intuitively motivated by SAR imaging physics (non-negativity)
- Dimensionality reduction: k-rank non-negative matrix approximation

Figure: Illustration: NMF vs. PCA for image representation.

 $^{15}{\rm Lee \ and \ Seung, \ Nature, \ 1999}$

Non-negative Matrix Approximation (NNMA)

Properties:

- Basis vectors $oldsymbol{w}_i$ not orthogonal by design
- Sparsity of $\boldsymbol{W}, \boldsymbol{H}$ can be enforced additionally
- W, H not unique

Advantages over SVD/PCA for ATR:

- Easy interpretation of basis vectors
- No restriction of orthogonality

Non-negative Matrix Approximation (NNMA) Alternating Least Squares¹⁶:

$$egin{array}{ll} \min_{oldsymbol{W},oldsymbol{H}} & \|oldsymbol{X}-oldsymbol{W}oldsymbol{H}\|_F^2 \ {
m s.t.} & oldsymbol{W},oldsymbol{H}\geqoldsymbol{0} \end{array}$$

• Not jointly convex in W, H (separably convex however)

 $\begin{array}{c} 16 \\ \text{Paatero and Tapper, 1994} \\ 17 \\ \text{Lee and Seung, 2000} \end{array}$

Non-negative Matrix Approximation (NNMA) Alternating Least Squares¹⁶:

$$egin{array}{ll} \min_{oldsymbol{W},oldsymbol{H}} & \|oldsymbol{X}-oldsymbol{W}oldsymbol{H}\|_F^2 \ {
m s.t.} & oldsymbol{W},oldsymbol{H}\geqoldsymbol{0} \end{array}$$

• Not jointly convex in W, H (separably convex however)

Alternate formulation: Divergence update¹⁷

$$\min_{\boldsymbol{W},\boldsymbol{H}} D(\boldsymbol{X}||\boldsymbol{W}\boldsymbol{H}) = \sum_{i,j} \left(\boldsymbol{X}_{ij} \log \frac{\boldsymbol{X}_{ij}}{[\boldsymbol{W}\boldsymbol{H}]_{ij}} - \boldsymbol{X}_{ij} + [\boldsymbol{W}\boldsymbol{H}]_{ij} \right)$$

s.t. $\boldsymbol{W}, \boldsymbol{H} \ge \boldsymbol{0}$

16 Paatero and Tapper, 1994

Non-negative Matrix Approximation (NNMA) Alternating Least Squares¹⁶:

$$egin{array}{ll} \min_{oldsymbol{W},oldsymbol{H}} & \|oldsymbol{X}-oldsymbol{W}oldsymbol{H}\|_F^2 \ {
m s.t.} & oldsymbol{W},oldsymbol{H}\geqoldsymbol{0} \end{array}$$

• Not jointly convex in W, H (separably convex however)

Alternate formulation: Divergence update¹⁷

$$\min_{\boldsymbol{W},\boldsymbol{H}} D(\boldsymbol{X}||\boldsymbol{W}\boldsymbol{H}) = \sum_{i,j} \left(\boldsymbol{X}_{ij} \log \frac{\boldsymbol{X}_{ij}}{[\boldsymbol{W}\boldsymbol{H}]_{ij}} - \boldsymbol{X}_{ij} + [\boldsymbol{W}\boldsymbol{H}]_{ij} \right)$$
s.t. $\boldsymbol{W}, \boldsymbol{H} \ge \boldsymbol{0}$

Feature extraction (corresponding to target vector \boldsymbol{y}):

$$\boldsymbol{h} = \min_{\boldsymbol{h}} \| \boldsymbol{y} - \boldsymbol{W} \boldsymbol{h} \|_2, \text{ s.t. } \boldsymbol{h} \ge 0$$

16 Paatero and Tapper, 1994

17 Lee and Seung, 2000

- Generalization of PCA for binary classification
- Maximizes the signal-to-noise ratio between a pair of stochastic signals *u*, *v*:

$$J_{\mathsf{OPCA}}(\boldsymbol{w}) = \frac{\boldsymbol{w}^T \boldsymbol{R}_u \boldsymbol{w}}{\boldsymbol{w}^T \boldsymbol{R}_v \boldsymbol{w}},$$

where $\boldsymbol{R}_u = E\{\boldsymbol{u}\boldsymbol{u}^T\}, \boldsymbol{R}_v = E\{\boldsymbol{v}\boldsymbol{v}^T\}$

 $^{^{18}\}mathrm{Diamantaras} \text{ and } \mathrm{Kung}, \, 1996$

- Generalization of PCA for binary classification
- Maximizes the signal-to-noise ratio between a pair of stochastic signals **u**, **v**:

$$J_{\mathsf{OPCA}}(\boldsymbol{w}) = \frac{\boldsymbol{w}^T \boldsymbol{R}_u \boldsymbol{w}}{\boldsymbol{w}^T \boldsymbol{R}_v \boldsymbol{w}},$$

where $R_{u} = E\{uu^{T}\}, R_{v} = E\{vv^{T}\}$

• Maximizer $w = e_1$ of $J_{OPCA} \rightarrow \text{principal oriented component}$; generalized eigenvector of $[\mathbf{R}_u, \mathbf{R}_v]$

¹⁸ Diamantaras and Kung, 1996

- Generalization of PCA for binary classification
- Maximizes the signal-to-noise ratio between a pair of stochastic signals *u*, *v*:

$$J_{\mathsf{OPCA}}(\boldsymbol{w}) = \frac{\boldsymbol{w}^T \boldsymbol{R}_u \boldsymbol{w}}{\boldsymbol{w}^T \boldsymbol{R}_v \boldsymbol{w}},$$

where $\pmb{R}_u = E\{\pmb{u}\pmb{u}^T\}, \pmb{R}_v = E\{\pmb{v}\pmb{v}^T\}$

- Maximizer $\boldsymbol{w} = \boldsymbol{e}_1$ of $J_{\text{OPCA}} \rightarrow \text{principal oriented component};$ generalized eigenvector of $[\boldsymbol{R}_u, \boldsymbol{R}_v]$
- Oriented components e_2, e_3, \ldots, e_m : maximize J_{OPCA} subject to

$$\boldsymbol{e}_i^T \boldsymbol{R}_u \boldsymbol{e}_j = \boldsymbol{e}_i^T \boldsymbol{R}_v \boldsymbol{e}_j = 0, i \neq j.$$

• Identical to PCA if $m{v}$ is white noise

 $^{18}\mathrm{Diamantaras} \text{ and } \mathrm{Kung}, \, 1996$

- Generalization of PCA for binary classification
- Maximizes the signal-to-noise ratio between a pair of stochastic signals *u*, *v*:

$$J_{\mathsf{OPCA}}(\boldsymbol{w}) = \frac{\boldsymbol{w}^T \boldsymbol{R}_u \boldsymbol{w}}{\boldsymbol{w}^T \boldsymbol{R}_v \boldsymbol{w}},$$

where $\pmb{R}_u = E\{\pmb{u}\pmb{u}^T\}, \pmb{R}_v = E\{\pmb{v}\pmb{v}^T\}$

- Maximizer $\boldsymbol{w} = \boldsymbol{e}_1$ of $J_{\text{OPCA}} \rightarrow \text{principal oriented component};$ generalized eigenvector of $[\boldsymbol{R}_u, \boldsymbol{R}_v]$
- Oriented components e_2, e_3, \ldots, e_m : maximize J_{OPCA} subject to

$$\boldsymbol{e}_i^T \boldsymbol{R}_u \boldsymbol{e}_j = \boldsymbol{e}_i^T \boldsymbol{R}_v \boldsymbol{e}_j = 0, i \neq j.$$

- Identical to PCA if $m{v}$ is white noise
- Application to SAR ATR: signal v chosen from complementary class

 $^{18}\mathrm{Diamantaras} \text{ and } \mathrm{Kung}, \, 1996$

Oriented Principal Component Analysis (OPCA)

Class-specific basis:

- OPCA inherently designed for binary classification
- K-class scenario: solve K different binary problems
- For the *i*-th such problem:
 - \boldsymbol{R}_u : sample covariance matrix of training images from class i
 - R_v : sample covariance matrix of representative training images chosen from all other classes

Shared training vs. class-specific training

Shared basis:

- Data matrix contains training from all classes
- Assumption: inter-class variations dominant compared to intra-class

Shared training vs. class-specific training

Shared basis:

- Data matrix contains training from all classes
- Assumption: inter-class variations dominant compared to intra-class

Class-specific basis:

- Separate projection matrix $oldsymbol{A}_i$ for each class $i=1,\ldots,K$
- Projection matrix $oldsymbol{A} = [oldsymbol{A}_1 \ oldsymbol{A}_2 \ \dots oldsymbol{A}_K]$

Shared training vs. class-specific training

Shared basis:

- Data matrix contains training from all classes
- Assumption: inter-class variations dominant compared to intra-class

Class-specific basis:

- Separate projection matrix $oldsymbol{A}_i$ for each class $i=1,\ldots,K$
- Projection matrix $\boldsymbol{A} = [\boldsymbol{A}_1 \ \boldsymbol{A}_2 \ \dots \boldsymbol{A}_K]$
- More discriminative than shared basis
- Sensitive to scenario of inadequate training
- $\bullet\,$ Possibly higher feature dimension $\to\, {\rm computational\,\, cost}$

Classifier: Support Vector Machine (SVM)²¹

$$f(\boldsymbol{x}) = \sum_{i=1}^{N} \alpha_i y_i K(\boldsymbol{s}_i, \boldsymbol{x}) + b$$

• Widely used in ATR problems^{19,20}

 19 Zhao and Principe, IEEE Trans. Aerosp. Electron. Syst., 2001 20 Casasent and Wang, Neural Networks, 2005

 $^{21}\mathrm{Vapnik},$ The nature of statistical learning theory, 1995

Overall classification framework

- Shared training basis: PCA and NNMA
- Class-specific training basis: PCA, NNMA, OPCA
- Linear SVM: representative of state-of-the-art classifiers

Experimental set-up

- MSTAR database: one-foot resolution X-band SAR images
- Five target classes
 - T-72 tanks
 - BMP-2 infantry fighting vehicles
 - BTR-70 armored personnel carriers
 - IL131 trucks
 - D7 tractors

Target class	Serial number	# Training images	# Test images
BMP-2	SN_C21	233	196
	SN_9563	233	195
	SN_9566	232	196
BTR-70	SN_C71	233	196
T-72	SN_132	232	196
	SN_812	231	195
	SN_S7	228	191
ZIL131	-	299	274
D7	-	299	274

Table: Target classes in the experiment.

Experimental set-up

- Training images: 17° depression angle
- Test images: 15° depression angle
- Images cropped to 64×64 pixels (i.e. vectorized data in \mathbb{R}^{4096})
- Pose: varies from 0° to 360°
- Number of basis vectors: 750

Results: Classification performance

Class	BMP-2	BTR-70	T-72	ZIL131	D7
BMP-2	0.84	0.06	0.04	0.02	0.04
BTR-70	0.05	0.87	0.03	0.02	0.03
T-72	0.03	0.07	0.83	0.03	0.04
ZIL131	0.05	0.03	0.02	0.84	0.06
D7	0.06	0.02	0.04	0.06	0.82

Table: Confusion matrix: Shared PCA basis.

Table: Confusion matrix: Shared NNMA basis.

Class	BMP-2	BTR-70	T-72	ZIL131	D7
BMP-2	0.86	0.05	0.02	0.05	0.02
BTR-70	0.07	0.88	0.04	0.01	0.0
T-72	0.03	0.04	0.86	0.02	0.05
ZIL131	0.01	0.06	0.05	0.87	0.01
D7	0.04	0.02	0.06	0.04	0.84

Results: Classification performance

Table: Class-specific PCA basis.						
Class	BMP-2	BTR-70	T-72	ZIL131	D7	
BMP-2	0.86	0.05	0.04	0.02	0.03	
BTR-70	0.04	0.88	0.04	0.03	0.01	
T-72	0.04	0.05	0.85	0.02	0.04	
ZIL131	0.02	0.02	0.06	0.86	0.04	
D7	0.01	0.01	0.07	0.06	0.85	

Table: Class-specific NNMA basis.

Class	BMP-2	BTR-70	T-72	ZIL131	D7
BMP-2	0.88	0.05	0.02	0.01	0.04
BTR-70	0.03	0.90	0.02	0.03	0.02
T-72	0.02	0.05	0.87	0.04	0.02
ZIL131	0.04	0.02	0.03	0.89	0.02
D7	0.02	0.03	0.04	0.04	0.87

Table: Class-specific OPCA basis

Class	BMP-2	BTR-70	T-72	ZIL131	D7	
BMP-2	0.91	0.03	0.04	0.01	0.01	
BTR-70	0.04	0.91	0.01	0.03	0.01	
T-72	0.02	0.05	0.88	0.02	0.03	
ZIL131	0.03	0.01	0.03	0.90	0.03	
D7	0.03	0.03	0.02	0.03	0.89	

Conclusions

- Proposed alternatives to PCA-based feature extraction in ATR problems
 - NNMA: Non-negativity motivated by underlying SAR image physics
 - OPCA: Captures inter-class variability better

Conclusions

- Proposed alternatives to PCA-based feature extraction in ATR problems
 - NNMA: Non-negativity motivated by underlying SAR image physics
 - OPCA: Captures inter-class variability better
- Future work:
 - NNMA/OPCA features for meta-classification.

Thank You

Questions?

