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Digital image acquisition system1

1
Park et al., IEEE Signal Processing Magazine, 2003
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Image super-resolution (SR)

Classical inverse problem in image processing2 (1984-present)

Estimate the unknown high resolution (hi-res) image from low
resolution (lo-res) image(s)

Optical SR: single lo-res image, frequency extrapolation beyond
diffraction limit
Digital SR: multiple lo-res captures, frequency extrapolation beyond
imaging system bandwidth

Complementary yet correlated information in multiple images

Lo-res image cues: sub-pixel shifts, zoom, blur

Applications: military surveillance, medical imaging, synthetic
aperture radar, thermal imaging, consumer electronics, etc.

2
Tsai and Huang, Advances in Computer Vision and Image Processing, 1984
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Model of the forward imaging process

yk = DBT(θk)x+ nk, 1 ≤ k ≤ K

where

x ∈ Rn is the unknown hi-res image

yk ∈ Rm (m < n) represents the k-th lo-res image

T(θk) ∈ Rn×n is the k-th geometric warping matrix

θk obtained from projective homography matrix3

B ∈ Rn×n describes camera optical blur

D ∈ Rm×n is a downsampling matrix of 1s and 0s

nk ∈ Rm is the noise vector that corrupts yk.

3
Mann and Picard, IEEE Trans. Image Processing, 1997
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Cost function formulation

C =

K∑
k=1

‖yk −DBT(θk)x‖p + λρ(x), p ≥ 1

(x̂, θ̂) = argmin
x,θ
C

Error norm minimization: dual of MAP estimation under a noise model.

ρ(x): regularization → stable solution

Analogy to prior in MAP estimation

p(x|y) ∝ p(y|x)p(x)

x̂ = argmax
x

p(y|x) p(x) → Prior

Example: ρ(x) = ‖Ax‖22 ⇔ zero-mean Gaussian prior

lp norm: commonly p = 1 (Laplacian noise; robustness to outliers)
or p = 2 (Gaussian).
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Early approaches to SR

1 Estimation of registration parameters θk and hi-res image
sequentially

2 Cost function minimization under:

different norms4

image prior/regularization models5

3 Joint MAP estimation of geometric registration parameters and
hi-res image 5,6

4
Farsiu et. al., IEEE Trans. Image Processing, 2004

5
Pickup et. al., EURASIP 2007

6
Hardie et. al., IEEE Trans. Image Processing, 1997
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Challenges in SR
Camera imaging model well-understood, but issues remain:

1 Tractability

Not jointly convex in x,θ
Convexity in x (for fixed θ) well-known; not necessarily convex in θ

(a) (b)

Figure: (a) Patch of brick wall, (b) Sub-patch. Registration does not
give a unique corresponding sub-patch in the original image.

Computational complexity

2 Faithfulness of resulting solutions to real-world constraints.
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Contributions of our work
1 Separable convexity via transformation of variables7 fk : θk 7→ T(θk)

θ: change in pixel coordinates, T: pixel intensity mapping.

C(x, {Tk},B) =

K∑
k=1

‖yk −DBTkx‖p + λρ(x).

2 Formulation of elegant and physically meaningful convex constraints.

Why convexity?

Convergence guarantee to minima

Robustness to initialization values.
7
Hindi, American Control Conference, 2004
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Separable convexity of imaging variables

Separable convexity of C in x well-known.

Convexity in B for fixed x and {Tk} follows from triangle inequality:

C(αB1 + (1− α)B2)

=

K∑
k=1

‖yk −D(αB1 + (1− α)B2)Tkx‖p

=
K∑

k=1

‖α(yk −DB1Tkx) + (1− α)(yk −DB2Tkx)‖p

≤ α

K∑
k=1

‖yk −DB1Tkx‖p + (1− α)
K∑

k=1

‖yk −DB2Tkx‖p

= α C(B1) + (1− α) C(B2).

Separable convexity in Tk shown similarly.

Separable convexity holds for any lp norm, p ≥ 1.
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Formulation of convex constraints

Ensure that imaging parameters correspond to real-world imaging
physics; lead to physically meaningful images

Non-negative pixel values of hi-res and lo-res images

0 ≤ x ≤ 1

0 ≤ DBTkx ≤ 1, 1 ≤ k ≤ K

Tk: interpolation matrix, B: filtering with a local spatial kernel;
each row should sum to 1

Tk.1 = 1, 1 ≤ k ≤ K
B.1 = 1,

where 1 ∈ Rn has all entries equal to 1.
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Formulation of convex constraints

Figure: The ∗ in Tk indicate the non-zero values in every row. The corresponding locations in
the column of Mk have zero entries, and all other entries are 1. (Mk = [mk,1 mk,2 . . .mk,n].)

Candidate set of non-zero entries in each row of Tk known:

tTk,imk,i = 0, 1 ≤ i ≤ n, 1 ≤ k ≤ K

where tk,i ∈ Rn is the i-th row of Tk, and mk,i ∈ Rn is the
corresponding membership vector.
Similar constraint on B:

bTi ei = 0, 1 ≤ i ≤ n.
Constraints also exhibit separable convexity.
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Optimization problem

minimize
∑K
k=1 ‖yk −DBTkx‖p + λρ(x)

subject to 0 ≤ x ≤ 1
0 ≤ DBTkx ≤ 1, 1 ≤ k ≤ K

Tk.1 = 1, 1 ≤ k ≤ K

B.1 = 1

tTk,imk,i = 0, 1 ≤ i ≤ n, 1 ≤ k ≤ K

bTi ei = 0, 1 ≤ i ≤ n

.
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Is the camera imaging model complete?

Assumption: Identical illumination conditions during lo-res capture

Not valid in general

Variation in natural lighting, shadows, light sources in scene
Camera parameters - exposure time, aperture size, white balancing

Incorporate photometric registration into model8

Affine model: brightness gain and offset parameters

C(x, {Tk},B,λ) =
K∑
k=1

‖yk − λαkDBTkx− λβk1‖p + γρ(x)

λ := [λα1 , λβ1 , . . . , λαK , λβK ]
T , 1 ∈ Rm: vector of all 1’s

Separable convexity property of C still holds!

8
Gunturk and Gevrekci, IEEE Signal Processing Letters, 2006
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Final optimization problem

minimize
∑K
k=1 ‖yk − λαkDBTkx− λβk1‖p + γρ(x)

subject to 0 ≤ x ≤ 1
0 ≤ λαkDBTkx+ λβk1 ≤ 1, 1 ≤ k ≤ K

λαk > 0, 1 ≤ k ≤ K

Tk.1 = 1, 1 ≤ k ≤ K

B.1 = 1

tTk,imk,i = 0, 1 ≤ i ≤ n, 1 ≤ k ≤ K

bTi ei = 0, 1 ≤ i ≤ n
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Constrained Alternating Convex Optimization algorithm

Convex optimization problem in each
individual variable

Alternating minimization framework

Dynamically evolving convex constraint:

0 ≤ λαkDBTkx+λβk1 ≤ 1, 1 ≤ k ≤ K

{Tk},B,λ,x updated successively
after steps 1, 2,3 and 4 respectively.

Constraint still remains convex in the
variable of interest.
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Resolution enhancement: practical upper bound

(a) (b)

(c) (d)
Figure: l2 norm optimization: (a) Bilinearly interpolated lo-res image, (b) Result from Gunturk
et al. (2006), (c) Practical upper bound: reconstructed from true imaging model parameters, (d)
Result of proposed algorithm.
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Joint resolution and dynamic range enhancement

(a)

(b) (c)

Figure: Images courtesy Prof. Gunturk, LSU. (a) Four sample lo-res and LDR images, (b) Result
from Gunturk et al. (2006), (c) Result from proposed algorithm.
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Conclusions

CACO framework unifies existing spatial domain SR techniques

Improved algorithmic tractability

Explicit optimization of {Tk} and B, subject to physically
meaningful convex constraints

Remark: For l2 norm, optimizing B and Tk can be shown to reduce
to QP → efficient solvers.
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Formulation as a QP

arg min
W
‖y −Wx‖2 = arg min

W

(
(y −Wx)T (y −Wx)

)
= arg min

W

(
xTWTWx− 2yTWx

)
Let Y := xxT and wT

i denote the i-th row of W. Then,

xTWTWx = tr(xTWTWx) = tr(WxxTWT )

= tr(WYWT ) =
K∑
i=1

wT
i Ywi

= vec(WT )T (Im ⊗Y)vec(WT )
= vec(WT )T Ỹvec(WT ),

where vec(·) is the vectorizing operator, Im is the m×m identity matrix,
and ⊗ represents the Kronecker product.
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Formulation as a QP (contd.)

Similarly,

yTWx = tr(yTWx) = tr(WxyT )
= tr((xyT )TWT ) = vec(xyT )T vec(WT ).

With z := vec(WT ) and c := −2vec(xyT ), the original cost function
becomes

arg min
z

zT Ỹz + cT z. (1)

Y positive semidefinite, Im positive definite ⇒ Ỹ is positive
semidefinite (Kronecker product preserves positive definiteness).

Cost function is quadratic in z.
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What about the constraints?
Membership constraint: Let 0 ∈ Rm denote the vector with all
zeros. Define E ∈ Rn×mn such that

E =


eT1 0T 0T · · · 0T

0T eT2 0T · · · 0T

· · · · · · · · · · · · · · ·
0T 0T · · · 0T eTn

 (2)

wT
i ei = 0, i = 1, 2, . . . , n⇔ Ez = 0(∈ Rn). (3)

Non-negativity:
wi,j ≥ 0⇔ z � 0(∈ Rmn). (4)

Interpolation constraint: Let 1 ∈ Rm denote the vector with all
ones. Define F ∈ Rn×mn such that

F =


1T 0T 0T · · · 0T

0T 1T 0T · · · 0T

· · · · · · · · · · · · · · ·
0T 0T · · · 0T 1T

 (5)

W.1 = 1⇔ Fz = 1(∈ Rn). (6)
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Complete optimization problem

minimize zT Ỹz + cT z

subject to Ez = 0
z � 0
Fz = 1

(7)

where

z = vec(WT )
Ỹ = Im ⊗ (xxT )
c = −2vec(xxT ).
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