A Constrained Optimization Perspective on Joint Spatial Resolution and Dynamic Range Enhancement

Vishal Monga Umamahesh Srinivas
Pennsylvania State University, USA

Forty-fourth Asilomar Conference on Signals, Systems and Computers

November 09, 2010

Digital image acquisition system ${ }^{1}$

[^0]$\frac{\overbrace{}^{\circ} \mathrm{PAL} \text { PENNSTATE }}{\text { Information Processing and Algorithms Laboratory }} 2$

Image super-resolution (SR)

- Classical inverse problem in image processing ${ }^{2}$ (1984-present)
- Estimate the unknown high resolution (hi-res) image from low resolution (lo-res) image(s)
- Optical SR: single lo-res image, frequency extrapolation beyond diffraction limit
- Digital SR: multiple lo-res captures, frequency extrapolation beyond imaging system bandwidth
- Complementary yet correlated information in multiple images
- Lo-res image cues: sub-pixel shifts, zoom, blur
- Applications: military surveillance, medical imaging, synthetic aperture radar, thermal imaging, consumer electronics, etc.

[^1]
Model of the forward imaging process

$$
\mathbf{y}_{k}=\mathbf{D B T}\left(\boldsymbol{\theta}_{k}\right) \mathbf{x}+\mathbf{n}_{k}, \quad 1 \leq k \leq K
$$

where

- $\mathbf{x} \in \mathbb{R}^{n}$ is the unknown hi-res image
- $\mathbf{y}_{k} \in \mathbb{R}^{m}(m<n)$ represents the k-th lo-res image
- $\mathbf{T}\left(\boldsymbol{\theta}_{k}\right) \in \mathbb{R}^{n \times n}$ is the k-th geometric warping matrix
- $\boldsymbol{\theta}_{k}$ obtained from projective homography matrix ${ }^{3}$
- $\mathbf{B} \in \mathbb{R}^{n \times n}$ describes camera optical blur
- $\mathbf{D} \in \mathbb{R}^{m \times n}$ is a downsampling matrix of $1 s$ and $0 s$
- $\mathbf{n}_{k} \in \mathbb{R}^{m}$ is the noise vector that corrupts \mathbf{y}_{k}.

[^2]
Cost function formulation

$$
\begin{aligned}
\mathcal{C} & =\sum_{k=1}^{K}\left\|\mathbf{y}_{k}-\mathbf{D B T}\left(\boldsymbol{\theta}_{k}\right) \mathbf{x}\right\|_{p}+\lambda \rho(\mathbf{x}), p \geq 1 \\
(\hat{\mathbf{x}}, \hat{\boldsymbol{\theta}}) & =\arg \min _{\mathbf{x}, \boldsymbol{\theta}} \mathcal{C}
\end{aligned}
$$

Error norm minimization: dual of MAP estimation under a noise model.

- p(x): ragularization y stable solution

Cost function formulation

$$
\begin{aligned}
\mathcal{C} & =\sum_{k=1}^{K}\left\|\mathbf{y}_{k}-\mathbf{D B T}\left(\boldsymbol{\theta}_{k}\right) \mathbf{x}\right\|_{p}+\lambda \rho(\mathbf{x}), p \geq 1 \\
(\hat{\mathbf{x}}, \hat{\boldsymbol{\theta}}) & =\arg \min _{\mathbf{x}, \boldsymbol{\theta}} \mathcal{C}
\end{aligned}
$$

Error norm minimization: dual of MAP estimation under a noise model.

Cost function formulation

$$
\begin{aligned}
\mathcal{C} & =\sum_{k=1}^{K}\left\|\mathbf{y}_{k}-\mathbf{D B T}\left(\boldsymbol{\theta}_{k}\right) \mathbf{x}\right\|_{p}+\lambda \rho(\mathbf{x}), p \geq 1 \\
(\hat{\mathbf{x}}, \hat{\boldsymbol{\theta}}) & =\arg \min _{\mathbf{x}, \boldsymbol{\theta}} \mathcal{C}
\end{aligned}
$$

Error norm minimization: dual of MAP estimation under a noise model.

- $\rho(\mathbf{x})$: regularization \rightarrow stable solution
- Example: $\rho(\mathbf{x})=\|\mathbf{A} \mathbf{x}\|_{2}^{2} \Leftrightarrow$ zero-mean Gaussian prior

Cost function formulation

$$
\begin{aligned}
\mathcal{C} & =\sum_{k=1}^{K}\left\|\mathbf{y}_{k}-\mathbf{D B T}\left(\boldsymbol{\theta}_{k}\right) \mathbf{x}\right\|_{p}+\lambda \rho(\mathbf{x}), p \geq 1 \\
(\hat{\mathbf{x}}, \hat{\boldsymbol{\theta}}) & =\arg \min _{\mathbf{x}, \boldsymbol{\theta}} \mathcal{C}
\end{aligned}
$$

Error norm minimization: dual of MAP estimation under a noise model.

- $\rho(\mathbf{x})$: regularization \rightarrow stable solution
- Analogy to prior in MAP estimation

$$
\begin{aligned}
p(\mathbf{x} \mid \mathbf{y}) & \propto p(\mathbf{y} \mid \mathbf{x}) p(\mathbf{x}) \\
\hat{\mathbf{x}} & =\arg \max _{\mathbf{x}} p(\mathbf{y} \mid \mathbf{x}) p(\mathbf{x}) \rightarrow \text { Prior }
\end{aligned}
$$

- Example: $\rho(\mathbf{x})=\|\mathbf{A x}\|_{2}^{2} \Leftrightarrow$ zero-mean Gaussian prior
- l_{p} norm: commonly $p=1$ (Laplacian noise; robustness to outliers)

Cost function formulation

$$
\begin{aligned}
\mathcal{C} & =\sum_{k=1}^{K}\left\|\mathbf{y}_{k}-\mathbf{D B T}\left(\boldsymbol{\theta}_{k}\right) \mathbf{x}\right\|_{p}+\lambda \rho(\mathbf{x}), p \geq 1 \\
(\hat{\mathbf{x}}, \hat{\boldsymbol{\theta}}) & =\arg \min _{\mathbf{x}, \boldsymbol{\theta}} \mathcal{C}
\end{aligned}
$$

Error norm minimization: dual of MAP estimation under a noise model.

- $\rho(\mathbf{x})$: regularization \rightarrow stable solution
- Analogy to prior in MAP estimation

$$
\begin{aligned}
p(\mathbf{x} \mid \mathbf{y}) & \propto p(\mathbf{y} \mid \mathbf{x}) p(\mathbf{x}) \\
\hat{\mathbf{x}} & =\arg \max _{\mathbf{x}} p(\mathbf{y} \mid \mathbf{x}) p(\mathbf{x}) \rightarrow \text { Prior }
\end{aligned}
$$

- Example: $\rho(\mathbf{x})=\|\mathbf{A x}\|_{2}^{2} \Leftrightarrow$ zero-mean Gaussian prior
\square

Cost function formulation

$$
\begin{aligned}
\mathcal{C} & =\sum_{k=1}^{K}\left\|\mathbf{y}_{k}-\mathbf{D B T}\left(\boldsymbol{\theta}_{k}\right) \mathbf{x}\right\|_{p}+\lambda \rho(\mathbf{x}), p \geq 1 \\
(\hat{\mathbf{x}}, \hat{\boldsymbol{\theta}}) & =\arg \min _{\mathbf{x}, \boldsymbol{\theta}} \mathcal{C}
\end{aligned}
$$

Error norm minimization: dual of MAP estimation under a noise model.

- $\rho(\mathbf{x})$: regularization \rightarrow stable solution
- Analogy to prior in MAP estimation

$$
\begin{aligned}
p(\mathbf{x} \mid \mathbf{y}) & \propto p(\mathbf{y} \mid \mathbf{x}) p(\mathbf{x}) \\
\hat{\mathbf{x}} & =\arg \max _{\mathbf{x}} p(\mathbf{y} \mid \mathbf{x}) p(\mathbf{x}) \rightarrow \text { Prior }
\end{aligned}
$$

- Example: $\rho(\mathbf{x})=\|\mathbf{A x}\|_{2}^{2} \Leftrightarrow$ zero-mean Gaussian prior
- l_{p} norm: commonly $p=1$ (Laplacian noise; robustness to outliers) or $p=2$ (Gaussian).

Early approaches to SR

(1) Estimation of registration parameters $\boldsymbol{\theta}_{k}$ and hi-res image sequentially
(2) Cost function minimization under:

- different norms ${ }^{4}$
- image prior/regularization models ${ }^{5}$
(0) Joint MAP estimation of geometric registration parameters and hi-res image ${ }^{5,6}$

[^3]
Challenges in SR

Camera imaging model well-understood, but issues remain:
(1) Tractability

Figure: (a) Patch of brick wall, (b) Sub-patch. Registration does not give a unique corresponding sub-patch in the original image.

Challenges in SR

Camera imaging model well-understood, but issues remain:
(1) Tractability

- Not jointly convex in $\mathbf{x}, \boldsymbol{\theta}$

Figure: (a) Patch of brick wall, (b) Sub-patch. Registration does not give a unique corresponding sub-patch in the original image.

- Computational complexity

Challenges in SR

Camera imaging model well-understood, but issues remain:

(1) Tractability

- Not jointly convex in $\mathbf{x}, \boldsymbol{\theta}$
- Convexity in \mathbf{x} (for fixed $\boldsymbol{\theta}$) well-known; not necessarily convex in $\boldsymbol{\theta}$

(a)

(b)

Figure: (a) Patch of brick wall, (b) Sub-patch. Registration does not give a unique corresponding sub-patch in the original image.
() Faithfulness of resulting solutions to real-world constraints.

Challenges in SR

Camera imaging model well-understood, but issues remain:

(1) Tractability

- Not jointly convex in $\mathbf{x}, \boldsymbol{\theta}$
- Convexity in \mathbf{x} (for fixed $\boldsymbol{\theta}$) well-known; not necessarily convex in $\boldsymbol{\theta}$

(a)

(b)

Figure: (a) Patch of brick wall, (b) Sub-patch. Registration does not give a unique corresponding sub-patch in the original image.

- Computational complexity
(9) Faithfulness of resulting solutions to real-world constraints

Challenges in SR

Camera imaging model well-understood, but issues remain:

(1) Tractability

- Not jointly convex in $\mathbf{x}, \boldsymbol{\theta}$
- Convexity in \mathbf{x} (for fixed $\boldsymbol{\theta}$) well-known; not necessarily convex in $\boldsymbol{\theta}$

(a)

(b)

Figure: (a) Patch of brick wall, (b) Sub-patch. Registration does not give a unique corresponding sub-patch in the original image.

- Computational complexity
(2) Faithfulness of resulting solutions to real-world constraints.

Contributions of our work

(1) Separable convexity via transformation of variables ${ }^{7} \mathbf{f}_{k}: \boldsymbol{\theta}_{k} \mapsto \mathbf{T}\left(\boldsymbol{\theta}_{k}\right)$
$\boldsymbol{\theta}$: change in pixel coordinates, \mathbf{T} : pixel intensity mapping.

$$
\mathcal{C}\left(\mathbf{x},\left\{\mathbf{T}_{k}\right\}, \mathbf{B}\right)=\sum_{k=1}^{K}\left\|\mathbf{y}_{k}-\mathbf{D B} \mathbf{T}_{k} \mathbf{x}\right\|_{p}+\lambda \rho(\mathbf{x})
$$

- Convergence guarantee to minima

[^4]11/09/2010

Contributions of our work

(1) Separable convexity via transformation of variables ${ }^{7} \mathbf{f}_{k}: \boldsymbol{\theta}_{k} \mapsto \mathbf{T}\left(\boldsymbol{\theta}_{k}\right)$
$\boldsymbol{\theta}$: change in pixel coordinates, \mathbf{T} : pixel intensity mapping.

$$
\mathcal{C}\left(\mathbf{x},\left\{\mathbf{T}_{k}\right\}, \mathbf{B}\right)=\sum_{k=1}^{K}\left\|\mathbf{y}_{k}-\mathbf{D B} \mathbf{T}_{k} \mathbf{x}\right\|_{p}+\lambda \rho(\mathbf{x})
$$

(2) Formulation of elegant and physically meaningful convex constraints.

[^5]11/09/2010

Contributions of our work

(1) Separable convexity via transformation of variables ${ }^{7} \mathbf{f}_{k}: \boldsymbol{\theta}_{k} \mapsto \mathbf{T}\left(\boldsymbol{\theta}_{k}\right)$
$\boldsymbol{\theta}$: change in pixel coordinates, \mathbf{T} : pixel intensity mapping.

$$
\mathcal{C}\left(\mathbf{x},\left\{\mathbf{T}_{k}\right\}, \mathbf{B}\right)=\sum_{k=1}^{K}\left\|\mathbf{y}_{k}-\mathbf{D B} \mathbf{T}_{k} \mathbf{x}\right\|_{p}+\lambda \rho(\mathbf{x})
$$

(2) Formulation of elegant and physically meaningful convex constraints.

Why convexity?

- Convergence guarantee to minima
- Robustness to initialization values.
${ }^{7}$ Hindi, American Control Conference, 2004
11/09/2010

Separable convexity of imaging variables

- Separable convexity of \mathcal{C} in x well-known.
- Convexity in B for fixed x and $\left\{\mathrm{T}_{k}\right\}$ follows from triangle inequality:
- Separable convexity in \mathbf{T}_{k} shown similarly.

Separable convexity of imaging variables

- Separable convexity of \mathcal{C} in x well-known.
- Convexity in \mathbf{B} for fixed \mathbf{x} and $\left\{\mathbf{T}_{k}\right\}$ follows from triangle inequality:

$$
\begin{aligned}
& \mathcal{C}\left(\alpha \mathbf{B}_{1}+(1-\alpha) \mathbf{B}_{2}\right) \\
= & \sum_{k=1}^{K}\left\|\mathbf{y}_{k}-\mathbf{D}\left(\alpha \mathbf{B}_{1}+(1-\alpha) \mathbf{B}_{2}\right) \mathbf{T}_{k} \mathbf{x}\right\|_{p} \\
= & \sum_{k=1}^{K}\left\|\alpha\left(\mathbf{y}_{k}-\mathbf{D} \mathbf{B}_{1} \mathbf{T}_{k} \mathbf{x}\right)+(1-\alpha)\left(\mathbf{y}_{k}-\mathbf{D B}_{2} \mathbf{T}_{k} \mathbf{x}\right)\right\|_{p} \\
\leq & \alpha \sum_{k=1}^{K}\left\|\mathbf{y}_{k}-\mathbf{D} \mathbf{B}_{1} \mathbf{T}_{k} \mathbf{x}\right\|_{p}+(1-\alpha) \sum_{k=1}^{K}\left\|\mathbf{y}_{k}-\mathbf{D B}_{2} \mathbf{T}_{k} \mathbf{x}\right\|_{p} \\
= & \alpha \mathcal{C}\left(\mathbf{B}_{1}\right)+(1-\alpha) \mathcal{C}\left(\mathbf{B}_{2}\right) .
\end{aligned}
$$

- Separable convexity in \mathbf{T}_{k} shown similarly.
- Separable convexity holds for any l_{p} norm, $p \geq 1$.

Separable convexity of imaging variables

- Separable convexity of \mathcal{C} in x well-known.
- Convexity in \mathbf{B} for fixed \mathbf{x} and $\left\{\mathbf{T}_{k}\right\}$ follows from triangle inequality:

$$
\begin{aligned}
& \mathcal{C}\left(\alpha \mathbf{B}_{1}+(1-\alpha) \mathbf{B}_{2}\right) \\
= & \sum_{k=1}^{K}\left\|\mathbf{y}_{k}-\mathbf{D}\left(\alpha \mathbf{B}_{1}+(1-\alpha) \mathbf{B}_{2}\right) \mathbf{T}_{k} \mathbf{x}\right\|_{p} \\
= & \sum_{k=1}^{K}\left\|\alpha\left(\mathbf{y}_{k}-\mathbf{D} \mathbf{B}_{1} \mathbf{T}_{k} \mathbf{x}\right)+(1-\alpha)\left(\mathbf{y}_{k}-\mathbf{D} \mathbf{B}_{2} \mathbf{T}_{k} \mathbf{x}\right)\right\|_{p} \\
\leq & \alpha \sum_{k=1}^{K}\left\|\mathbf{y}_{k}-\mathbf{D} \mathbf{B}_{1} \mathbf{T}_{k} \mathbf{x}\right\|_{p}+(1-\alpha) \sum_{k=1}^{K}\left\|\mathbf{y}_{k}-\mathbf{D} \mathbf{B}_{2} \mathbf{T}_{k} \mathbf{x}\right\|_{p} \\
= & \alpha \mathcal{C}\left(\mathbf{B}_{1}\right)+(1-\alpha) \mathcal{C}\left(\mathbf{B}_{2}\right)
\end{aligned}
$$

- Separable convexity in \mathbf{T}_{k} shown similarly.

Separable convexity holds for any /p norm, p
$11 / 09 / 2010 \quad$ Asilomar Conference 2010

Separable convexity of imaging variables

- Separable convexity of \mathcal{C} in x well-known.
- Convexity in \mathbf{B} for fixed \mathbf{x} and $\left\{\mathbf{T}_{k}\right\}$ follows from triangle inequality:

$$
\begin{aligned}
& \mathcal{C}\left(\alpha \mathbf{B}_{1}+(1-\alpha) \mathbf{B}_{2}\right) \\
= & \sum_{k=1}^{K}\left\|\mathbf{y}_{k}-\mathbf{D}\left(\alpha \mathbf{B}_{1}+(1-\alpha) \mathbf{B}_{2}\right) \mathbf{T}_{k} \mathbf{x}\right\|_{p} \\
= & \sum_{k=1}^{K}\left\|\alpha\left(\mathbf{y}_{k}-\mathbf{D} \mathbf{B}_{1} \mathbf{T}_{k} \mathbf{x}\right)+(1-\alpha)\left(\mathbf{y}_{k}-\mathbf{D B}_{2} \mathbf{T}_{k} \mathbf{x}\right)\right\|_{p} \\
\leq & \alpha \sum_{k=1}^{K}\left\|\mathbf{y}_{k}-\mathbf{D} \mathbf{B}_{1} \mathbf{T}_{k} \mathbf{x}\right\|_{p}+(1-\alpha) \sum_{k=1}^{K}\left\|\mathbf{y}_{k}-\mathbf{D B}_{2} \mathbf{T}_{k} \mathbf{x}\right\|_{p} \\
= & \alpha \mathcal{C}\left(\mathbf{B}_{1}\right)+(1-\alpha) \mathcal{C}\left(\mathbf{B}_{2}\right) .
\end{aligned}
$$

- Separable convexity in \mathbf{T}_{k} shown similarly.
- Separable convexity holds for any l_{p} norm, $p \geq 1$.

Formulation of convex constraints

- Ensure that imaging parameters correspond to real-world imaging physics; lead to physically meaningful images

where $1 \in \mathbb{R}^{n}$ has all entries equal to 1 .

Formulation of convex constraints

- Ensure that imaging parameters correspond to real-world imaging physics; lead to physically meaningful images
- Non-negative pixel values of hi-res and lo-res images

$$
\begin{aligned}
& \mathbf{0} \leq \mathbf{x} \leq \mathbf{1} \\
& \mathbf{0} \leq \mathbf{D B T}_{k} \mathbf{x} \leq \mathbf{1}, \quad 1 \leq k \leq K
\end{aligned}
$$

Formulation of convex constraints

- Ensure that imaging parameters correspond to real-world imaging physics; lead to physically meaningful images
- Non-negative pixel values of hi-res and lo-res images

$$
\begin{aligned}
& \mathbf{0} \leq \mathbf{x} \leq \mathbf{1} \\
& \mathbf{0} \leq \mathbf{D B T}_{k} \mathbf{x} \leq \mathbf{1}, \quad 1 \leq k \leq K
\end{aligned}
$$

- \mathbf{T}_{k} : interpolation matrix, \mathbf{B} : filtering with a local spatial kernel; each row should sum to 1

$$
\begin{aligned}
\mathbf{T}_{k} \cdot \mathbf{1} & =\mathbf{1}, \quad 1 \leq k \leq K \\
\mathbf{B . 1} & =\mathbf{1}
\end{aligned}
$$

where $1 \in \mathbb{R}^{n}$ has all entries equal to 1 .

Formulation of convex constraints

Figure: The $*$ in \mathbf{T}_{k} indicate the non-zero values in every row. The corresponding locations in the column of \mathbf{M}_{k} have zero entries, and all other entries are 1 . ($\mathbf{M}_{k}=\left[\begin{array}{llll}\mathbf{m}_{k, 1} & \mathbf{m}_{k, 2} & \ldots & \mathbf{m}_{k, n}\end{array}\right]$.)

- Candidate set of non-zero entries in each row of \mathbf{T}_{k} known:

$$
\mathbf{t}_{k, i}^{T} \mathbf{m}_{k, i}=0, \quad 1 \leq i \leq n, \quad 1 \leq k \leq K
$$

where $\mathbf{t}_{k, i} \in \mathbb{R}^{n}$ is the i-th row of \mathbf{T}_{k}, and $\mathbf{m}_{k, i} \in \mathbb{R}^{n}$ is the corresponding membership vector.

- Constraints also exhibit separable convexity.

Formulation of convex constraints

Figure: The $*$ in \mathbf{T}_{k} indicate the non-zero values in every row. The corresponding locations in the column of \mathbf{M}_{k} have zero entries, and all other entries are 1. ($\mathbf{M}_{k}=\left[\begin{array}{lll}\mathbf{m}_{k, 1} & \mathbf{m}_{k, 2} & \ldots \\ \mathbf{m}_{k, n}\end{array}\right]$.)

- Candidate set of non-zero entries in each row of \mathbf{T}_{k} known:

$$
\mathbf{t}_{k, i}^{T} \mathbf{m}_{k, i}=0, \quad 1 \leq i \leq n, \quad 1 \leq k \leq K
$$

where $\mathbf{t}_{k, i} \in \mathbb{R}^{n}$ is the i-th row of \mathbf{T}_{k}, and $\mathbf{m}_{k, i} \in \mathbb{R}^{n}$ is the corresponding membership vector.

- Similar constraint on B:

$$
\mathbf{b}_{i}^{T} \mathbf{e}_{i}=0, \quad 1 \leq i \leq n
$$

Formulation of convex constraints

Figure: The $*$ in \mathbf{T}_{k} indicate the non-zero values in every row. The corresponding locations in the column of \mathbf{M}_{k} have zero entries, and all other entries are 1. ($\left.\mathbf{M}_{k}=\left[\mathbf{m}_{k, 1} \mathbf{m}_{k, 2} \ldots \mathbf{m}_{k, n}\right].\right)$

- Candidate set of non-zero entries in each row of \mathbf{T}_{k} known:

$$
\mathbf{t}_{k, i}^{T} \mathbf{m}_{k, i}=0, \quad 1 \leq i \leq n, \quad 1 \leq k \leq K
$$

where $\mathbf{t}_{k, i} \in \mathbb{R}^{n}$ is the i-th row of \mathbf{T}_{k}, and $\mathbf{m}_{k, i} \in \mathbb{R}^{n}$ is the corresponding membership vector.

- Similar constraint on B:

$$
\mathbf{b}_{i}^{T} \mathbf{e}_{i}=0, \quad 1 \leq i \leq n .
$$

- Constraints also exhibit separable convexity.

Optimization problem

$$
\begin{array}{ll}
\operatorname{minimize} & \sum_{k=1}^{K} \| \mathbf{y}_{k}-\mathbf{D B T} \\
k & \mathbf{x} \|_{p}+\lambda \rho(\mathbf{x}) \\
\text { subject to } & \mathbf{0} \leq \mathbf{x} \leq \mathbf{1} \\
& \mathbf{0} \leq \mathbf{D B} \mathbf{T}_{k} \mathbf{x} \leq \mathbf{1}, \quad 1 \leq k \leq K \\
& \mathbf{T}_{k} \cdot \mathbf{1}=\mathbf{1}, \quad 1 \leq k \leq K \\
& \mathbf{B .} \mathbf{1}=\mathbf{1} \\
& \mathbf{t}_{k, i}^{T} \mathbf{m}_{k, i}=0, \quad 1 \leq i \leq n, \quad 1 \leq k \leq K \\
& \mathbf{b}_{i}^{T} \mathbf{e}_{i}=0, \quad 1 \leq i \leq n
\end{array}
$$

Is the camera imaging model complete?

- Assumption: Identical illumination conditions during lo-res capture
- Not valid in general
- Variation in natural lighting, shadows, light sources in scene
- Camera parameters - exposure time, aperture size, white balancing
- Incorporate photometric registration into model ${ }^{8}$
- Affine model: brightness gain and offset parameters

[^6]$\frac{\bullet \text { !|PAL@ PENNSTATE }}{\text { !information Processing and Algorithms Laboratory }} 13$

Is the camera imaging model complete?

- Assumption: Identical illumination conditions during lo-res capture
- Not valid in general
- Variation in natural lighting, shadows, light sources in scene
- Camera parameters - exposure time, aperture size, white balancing
- Incorporate photometric registration into model ${ }^{8}$
- Affine model: brightness gain and offset parameters
- Separable convexity property of \mathcal{C} still holds!

[^7]$\frac{\bullet \text { !|PAL@ PENNSTATE }}{\text { !information Processing and Algorithms Laboratory }} 13$

Is the camera imaging model complete?

- Assumption: Identical illumination conditions during lo-res capture
- Not valid in general
- Variation in natural lighting, shadows, light sources in scene
- Camera parameters - exposure time, aperture size, white balancing
- Incorporate photometric registration into model ${ }^{8}$
- Affine model: brightness gain and offset parameters

$$
\mathcal{C}\left(\mathbf{x},\left\{\mathbf{T}_{k}\right\}, \mathbf{B}, \boldsymbol{\lambda}\right)=\sum_{k=1}^{K}\left\|\mathbf{y}_{k}-\lambda_{\alpha_{k}} \mathbf{D B} \mathbf{T}_{k} \mathbf{x}-\lambda_{\beta_{k}} \mathbf{1}\right\|_{p}+\gamma \rho(\mathbf{x})
$$

- $\boldsymbol{\lambda}:=\left[\lambda_{\alpha_{1}}, \lambda_{\beta_{1}}, \ldots, \lambda_{\alpha_{K}}, \lambda_{\beta_{K}}\right]^{T}, \mathbf{1} \in \mathbb{R}^{m}:$ vector of all 1 's

[^8]11/09/2010

Is the camera imaging model complete?

- Assumption: Identical illumination conditions during lo-res capture
- Not valid in general
- Variation in natural lighting, shadows, light sources in scene
- Camera parameters - exposure time, aperture size, white balancing
- Incorporate photometric registration into model ${ }^{8}$
- Affine model: brightness gain and offset parameters

$$
\mathcal{C}\left(\mathbf{x},\left\{\mathbf{T}_{k}\right\}, \mathbf{B}, \boldsymbol{\lambda}\right)=\sum_{k=1}^{K}\left\|\mathbf{y}_{k}-\lambda_{\alpha_{k}} \mathbf{D B} \mathbf{T}_{k} \mathbf{x}-\lambda_{\beta_{k}} \mathbf{1}\right\|_{p}+\gamma \rho(\mathbf{x})
$$

- $\boldsymbol{\lambda}:=\left[\lambda_{\alpha_{1}}, \lambda_{\beta_{1}}, \ldots, \lambda_{\alpha_{K}}, \lambda_{\beta_{K}}\right]^{T}, \mathbf{1} \in \mathbb{R}^{m}$: vector of all 1 's
- Separable convexity property of \mathcal{C} still holds!

[^9]11/09/2010

Final optimization problem

$$
\begin{array}{ll}
\operatorname{minimize} & \sum_{k=1}^{K}\left\|\mathbf{y}_{k}-\lambda_{\alpha_{k}} \mathbf{D B T}_{k} \mathbf{x}-\lambda_{\beta_{k}} \mathbf{1}\right\|_{p}+\gamma \rho(\mathbf{x}) \\
\text { subject to } & \mathbf{0} \leq \mathbf{x} \leq \mathbf{1} \\
& \mathbf{0} \leq \lambda_{\alpha_{k}} \mathbf{D B T}_{k} \mathbf{x}+\lambda_{\beta_{k}} \mathbf{1} \leq \mathbf{1}, \quad 1 \leq k \leq K \\
& \lambda_{\alpha_{k}}>0, \quad 1 \leq k \leq K \\
& \mathbf{T}_{k} \cdot \mathbf{1}=\mathbf{1}, \quad 1 \leq k \leq K \\
& \mathbf{B .} \mathbf{1}=\mathbf{1} \\
& \mathbf{t}_{k, i}^{T} \mathbf{m}_{k, i}=0, \quad 1 \leq i \leq n, \quad 1 \leq k \leq K \\
& \mathbf{b}_{i}^{T} \mathbf{e}_{i}=0, \quad 1 \leq i \leq n
\end{array}
$$

Constrained Alternating Convex Optimization algorithm

```
Algorithm 1 CACO
    1: For initial estimates \(\mathrm{x}_{0},\left\{\mathrm{~T}_{k}\right\}_{0}, \mathbf{B}_{0}\) and \(\boldsymbol{\lambda}_{0}\) (available from
    state-of-the-art), optimize \(\left\{\mathrm{T}_{k}\right\}\) as:
\[
\begin{align*}
\left\{\mathbf{T}_{k}\right\}^{*}= & \arg \min _{\left\{\mathbf{T}_{k}\right\}} \sum_{k=1}^{K}\left\|\mathbf{y}_{k}-\lambda_{\alpha_{k, 0}} \mathbf{D B}_{0} \mathbf{T}_{k} \mathbf{x}_{0}-\lambda_{\beta_{k, 0}} \mathbf{1}\right\|_{p} \\
\text { subject to } & 0 \leq \lambda_{\alpha_{k, 0}} \mathbf{D B}_{0} \mathbf{T}_{k} \mathbf{x}_{0}+\lambda_{\beta_{k, 0}} \mathbf{1} \leq \mathbf{1}, 1 \leq k \leq K \\
& \mathbf{T}_{k} \cdot \mathbf{1}=1, \quad 1 \leq k \leq K \\
& \mathbf{t}_{k, i}^{T} \mathbf{m}_{k, i}=0, \quad 1 \leq i \leq n, \quad 1 \leq k \leq K \tag{3}
\end{align*}
\]
```

2: Next, optimize B as:

$$
\begin{align*}
\mathbf{B}^{*}= & \arg \min _{\mathbf{B}} \sum_{k=1}^{K}\left\|\mathbf{y}_{k}-\lambda_{\alpha_{k, 0}} \mathrm{DBT}_{k}^{*} \mathbf{x}_{0}-\lambda_{\beta_{k, 0}} \mathbf{1}\right\|_{p} \\
\text { subject to } & 0 \leq \lambda_{\alpha_{k, 0}} \mathbf{D B T}_{k}^{*} \mathbf{x}_{0}+\lambda_{\beta_{k, 0}} \mathbf{1} \leq 1,1 \leq k \leq K \\
& \mathbf{B} . \mathbf{1}=1 \\
& \mathbf{b}_{i}^{T} \mathbf{e}_{i}=0, \quad 1 \leq i \leq n \tag{4}
\end{align*}
$$

3: Next, optimize $\boldsymbol{\lambda}$ as:

$$
\begin{align*}
\lambda^{*}= & \arg \min _{\lambda} \sum_{k=1}^{K}\left\|\mathbf{y}_{k}-\lambda_{\alpha_{k}} \mathrm{DB}^{*} \mathbf{T}_{k}^{*} \mathrm{x}_{0}-\lambda_{\beta_{k}} \mathbf{1}\right\|_{p} \\
\text { subject to } & 0 \leq \lambda_{\alpha_{k}} \mathrm{DB}^{*} \mathbf{T}_{k}^{*} \mathbf{x}_{0}+\lambda_{\beta_{k}} 1 \leq 1,1 \leq k \leq K \\
& \lambda_{\alpha_{k}}>0, \quad 1 \leq k \leq K \tag{5}
\end{align*}
$$

4: Next, optimize x as:

$$
\begin{aligned}
\mathrm{x}^{*}= & \arg \min _{\mathrm{x}} \sum_{k=1}^{K}\left\|\mathrm{y}_{k}-\lambda_{\alpha_{k}}^{*} \mathrm{DB}^{*} \mathrm{~T}_{k}^{*} \mathrm{x}-\lambda_{\beta_{k}}^{*} \mathbf{1}\right\|_{p}+\gamma \rho(\mathrm{x}) \\
\text { subject to } & 0 \leq \mathrm{x} \leq 1 \\
& 0 \leq \lambda_{\alpha_{k}}^{*} \mathrm{DB}^{*} \mathbf{T}_{k}^{*} \mathrm{x}+\lambda_{\beta_{k}}^{*} 1 \leq 1,1 \leq k \leq K
\end{aligned}
$$

5: Replace estimates in step 1 with $\mathrm{x}^{*},\left\{\mathrm{~T}_{k}\right\}^{*}, \mathrm{~B}^{*}$ and $\boldsymbol{\lambda}^{*}$.
6: Repeat steps 1-5 till convergence.

Resolution enhancement: practical upper bound

Figure: l_{2} norm optimization: (a) Bilinearly interpolated lo-res image, (b) Result from Gunturk et al. (2006), (c) Practical upper bound: reconstructed from true imaging model parameters, (d) Result of proposed algorithm.

Joint resolution and dynamic range enhancement

(a)

Figure: Images courtesy Prof. Gunturk, LSU. (a) Four sample lo-res and LDR images, (b) Result from Gunturk et al. (2006), (c) Result from proposed algorithm.

Conclusions

- CACO framework unifies existing spatial domain SR techniques
- Improved algorithmic tractability
- Explicit optimization of $\left\{\mathbf{T}_{k}\right\}$ and \mathbf{B}, subject to physically meaningful convex constraints
- Remark: For l_{2} norm, optimizing \mathbf{B} and \mathbf{T}_{k} can be shown to reduce to QP \rightarrow efficient solvers.

Formulation as a QP

$$
\begin{aligned}
\arg \min _{\mathbf{W}}\|\mathbf{y}-\mathbf{W} \mathbf{x}\|^{2} & =\arg \min _{\mathbf{W}}\left((\mathbf{y}-\mathbf{W} \mathbf{x})^{T}(\mathbf{y}-\mathbf{W} \mathbf{x})\right) \\
& =\arg \min _{\mathbf{W}}\left(\mathbf{x}^{T} \mathbf{W}^{T} \mathbf{W} \mathbf{x}-2 \mathbf{y}^{T} \mathbf{W} \mathbf{x}\right)
\end{aligned}
$$

Let $\mathbf{Y}:=\mathbf{x x}^{T}$ and \mathbf{w}_{i}^{T} denote the i-th row of \mathbf{W}. Then,

$$
\begin{aligned}
\mathbf{x}^{T} \mathbf{W}^{T} \mathbf{W} \mathbf{x} & =\operatorname{tr}\left(\mathbf{x}^{T} \mathbf{W}^{T} \mathbf{W} \mathbf{x}\right)=\operatorname{tr}\left(\mathbf{W} \mathbf{x} \mathbf{x}^{T} \mathbf{W}^{T}\right) \\
& =\operatorname{tr}\left(\mathbf{W} \mathbf{Y} \mathbf{W}^{T}\right)=\sum_{i=1}^{K} \mathbf{w}_{i}^{T} \mathbf{Y} \mathbf{w}_{i} \\
& =\operatorname{vec}\left(\mathbf{W}^{T}\right)^{T}\left(\mathbf{I}_{m} \otimes \mathbf{Y}\right) \operatorname{vec}\left(\mathbf{W}^{T}\right) \\
& =\operatorname{vec}\left(\mathbf{W}^{T}\right)^{T} \tilde{\mathbf{Y}} \operatorname{vec}\left(\mathbf{W}^{T}\right)
\end{aligned}
$$

where $\operatorname{vec}(\cdot)$ is the vectorizing operator, \mathbf{I}_{m} is the $m \times m$ identity matrix, and \otimes represents the Kronecker product.

Formulation as a QP (contd.)

Similarly,

$$
\begin{aligned}
\mathbf{y}^{T} \mathbf{W} \mathbf{x} & =\operatorname{tr}\left(\mathbf{y}^{T} \mathbf{W} \mathbf{x}\right)=\operatorname{tr}\left(\mathbf{W} \mathbf{x} \mathbf{y}^{T}\right) \\
& =\operatorname{tr}\left(\left(\mathbf{x y}^{T}\right)^{T} \mathbf{W}^{T}\right)=\operatorname{vec}\left(\mathbf{x} \mathbf{y}^{T}\right)^{T} \operatorname{vec}\left(\mathbf{W}^{T}\right)
\end{aligned}
$$

With $\mathbf{z}:=\operatorname{vec}\left(\mathbf{W}^{T}\right)$ and $\mathbf{c}:=-2 v e c\left(\mathbf{x y}^{T}\right)$, the original cost function becomes

$$
\begin{equation*}
\arg \min _{\mathbf{z}} \mathbf{z}^{T} \tilde{\mathbf{Y}} \mathbf{z}+\mathbf{c}^{T} \mathbf{z} \tag{1}
\end{equation*}
$$

- \mathbf{Y} positive semidefinite, \mathbf{I}_{m} positive definite $\Rightarrow \tilde{\mathbf{Y}}$ is positive semidefinite (Kronecker product preserves positive definiteness).
- Cost function is quadratic in \mathbf{z}.

What about the constraints?

- Membership constraint: Let $\mathbf{0} \in \mathbb{R}^{m}$ denote the vector with all zeros. Define $\mathbf{E} \in \mathbb{R}^{n \times m n}$ such that

$$
\begin{align*}
\mathbf{E} & =\left[\begin{array}{ccccc}
\mathbf{e}_{1}^{T} & \mathbf{0}^{T} & \mathbf{0}^{T} & \cdots & \mathbf{0}^{T} \\
\mathbf{0}^{T} & \mathbf{e}_{2}^{T} & \mathbf{0}^{T} & \cdots & \mathbf{0}^{T} \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
\mathbf{0}^{T} & \mathbf{0}^{T} & \cdots & \mathbf{0}^{T} & \mathbf{e}_{n}^{T}
\end{array}\right] \tag{2}\\
\mathbf{w}_{i}^{T} \mathbf{e}_{i} & =0, i=1,2, \ldots, n \Leftrightarrow \mathbf{E z}=\mathbf{0}\left(\in \mathbb{R}^{n}\right) . \tag{3}
\end{align*}
$$

- Non-negativity:

$$
\begin{equation*}
w_{i, j} \geq 0 \Leftrightarrow \mathbf{z} \succeq \mathbf{0}\left(\in \mathbb{R}^{m n}\right) . \tag{4}
\end{equation*}
$$

- Interpolation constraint: Let $\mathbf{1} \in \mathbb{R}^{m}$ denote the vector with all ones. Define $\mathbf{F} \in \mathbb{R}^{n \times m n}$ such that

$$
\begin{gather*}
\mathbf{F}=\left[\begin{array}{ccccc}
\mathbf{1}^{T} & \mathbf{0}^{T} & \mathbf{0}^{T} & \cdots & \mathbf{0}^{T} \\
\mathbf{0}^{T} & \mathbf{1}^{T} & \mathbf{0}^{T} & \cdots & \mathbf{0}^{T} \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
\mathbf{0}^{T} & \mathbf{0}^{T} & \cdots & \mathbf{0}^{T} & \mathbf{1}^{T}
\end{array}\right] \tag{5}\\
\mathbf{W} \cdot \mathbf{1}=\mathbf{1} \Leftrightarrow \mathbf{F z}=\mathbf{1}\left(\in \mathbb{R}^{n}\right) . \tag{6}
\end{gather*}
$$

Complete optimization problem

$$
\begin{array}{ll}
\text { minimize } & \mathbf{z}^{T} \tilde{\mathbf{Y}} \mathbf{z}+\mathbf{c}^{T} \mathbf{z} \\
\text { subject to } & \mathbf{E z = 0} \tag{7}\\
& \mathbf{z} \succeq \mathbf{0} \\
& \mathbf{F z}=\mathbf{1}
\end{array}
$$

where

- $\mathbf{z}=\operatorname{vec}\left(\mathbf{W}^{T}\right)$
- $\tilde{\mathbf{Y}}=\mathbf{I}_{m} \otimes\left(\mathbf{x x}^{T}\right)$
- $\mathbf{c}=-2 v e c\left(\mathrm{xx}^{T}\right)$.

[^0]: $1_{\text {Park et al., IEEE Signal Processing Magazine, } 2003}$
 11/09/2010
 Asilomar Conference 2010

[^1]: ${ }^{2}$ Tsai and Huang, Advances in Computer Vision and Image Processing, 1984
 11/09/2010

[^2]: 3^{3} Mann and Picard, IEEE Trans. Image Processing, 1997
 11/09/2010

[^3]: ${ }^{4}$ Farsiu et. al., IEEE Trans. Image Processing, 2004
 ${ }^{5}$ Pickup et. al., EURASIP 2007
 ${ }^{6}$ Hardie et. al., IEEE Trans. Image Processing, 1997
 11/09/2010

[^4]: 7 Hindi, American Control Conference, 2004

[^5]: 7 Hindi, American Control Conference, 2004

[^6]: ${ }^{8}$ Gunturk and Gevrekci, IEEE Signal Processing Letters, 2006
 11/09/2010
 Asilomar Conference 2010

[^7]: ${ }^{8}$ Gunturk and Gevrekci, IEEE Signal Processing Letters, 2006
 11/09/2010
 Asilomar Conference 2010

[^8]: ${ }^{8}$ Gunturk and Gevrekci, IEEE Signal Processing Letters, 2006

[^9]: ${ }^{8}$ Gunturk and Gevrekci, IEEE Signal Processing Letters, 2006

