Image-adaptive Color Super-resolution

Umamahesh Srinivas Xuan Mo Vishal Monga
Pennsylvania State University, USA

Manu Parmar

Qualcomm MEMS Technologies, San Jose, CA

Color and Imaging Conference 2011
November 10, 2011

Outline

(1) Gray-scale super-resolution (SR): State-of-the-art
(3) Color SR: Background and motivation
(3) Contribution: Image-adaptive color super-resolution
(0) Results

Digital image acquisition system ${ }^{1}$

$1_{\text {Park et al., IEEE Signal Process. Mag., } 2003}$
11/10/2011

Model of the forward imaging process

$$
\mathbf{y}_{k}=\mathbf{D B T}\left(\boldsymbol{\theta}_{k}\right) \mathbf{x}+\mathbf{n}_{k}, \quad 1 \leq k \leq K
$$

- $\mathrm{x} \in \mathbb{R}^{n} \rightarrow$ unknown hi-res image
- $\mathbf{y}_{k} \in \mathbb{R}^{m}(m<n) \rightarrow k$-th lo-res image
- $\mathbf{T}\left(\boldsymbol{\theta}_{k}\right) \in \mathbb{R}^{n \times n} \rightarrow k$-th geometric warping matrix
- $\boldsymbol{\theta}_{k}$ obtained from projective homography matrix ${ }^{2}$
- $\mathbf{B} \in \mathbb{R}^{n \times n} \rightarrow$ camera optical blur
- $\mathbf{D} \in \mathbb{R}^{m \times n} \rightarrow$ downsampling matrix of $1 s$ and $0 s$
- $\mathbf{n}_{k} \in \mathbb{R}^{m} \rightarrow$ noise vector that corrupts \mathbf{y}_{k}.

[^0]11/10/2011

Prior work and key research challenges

$$
\begin{aligned}
\mathcal{C}(\mathbf{x}, \boldsymbol{\theta}) & =\sum_{k=1}^{K}\left\|\mathbf{y}_{k}-\mathbf{D B T}\left(\boldsymbol{\theta}_{k}\right) \mathbf{x}\right\|_{p}, p \geq 1 \\
(\hat{\mathbf{x}}, \hat{\boldsymbol{\theta}}) & =\arg \min _{\mathbf{x}, \boldsymbol{\theta}} \mathcal{C}
\end{aligned}
$$

(C) Sequential estimation of $\left\{\theta_{k}\right\}$ and hi-res image x
© Cost function minimization under different norms ${ }^{3} \rightarrow$ different noise models

Prior work and key research challenges

$$
\begin{aligned}
\mathcal{C}(\mathbf{x}, \boldsymbol{\theta}) & =\sum_{k=1}^{K}\left\|\mathbf{y}_{k}-\mathbf{D B T}\left(\boldsymbol{\theta}_{k}\right) \mathbf{x}\right\|_{p}, p \geq 1 \\
(\hat{\mathbf{x}}, \hat{\boldsymbol{\theta}}) & =\arg \min _{\mathbf{x}, \boldsymbol{\theta}} \mathcal{C}
\end{aligned}
$$

(1) Sequential estimation of $\left\{\boldsymbol{\theta}_{k}\right\}$ and hi-res image \mathbf{x}

- Sub-optimal
© Cost function minimization under different norms ${ }^{3} \rightarrow$ different noise
- Joint MAP estimation ${ }^{4}$ of $\left\{\boldsymbol{\theta}_{k}\right\}$ and hi-res image x

Prior work and key research challenges

$$
\begin{aligned}
\mathcal{C}(\mathbf{x}, \boldsymbol{\theta}) & =\sum_{k=1}^{K}\left\|\mathbf{y}_{k}-\mathbf{D B T}\left(\boldsymbol{\theta}_{k}\right) \mathbf{x}\right\|_{p}, p \geq 1 \\
(\hat{\mathbf{x}}, \hat{\boldsymbol{\theta}}) & =\arg \min _{\mathbf{x}, \boldsymbol{\theta}} \mathcal{C}
\end{aligned}
$$

(1) Sequential estimation of $\left\{\boldsymbol{\theta}_{k}\right\}$ and hi-res image \mathbf{x}

- Sub-optimal
(2) Cost function minimization under different norms ${ }^{3} \rightarrow$ different noise models
- Joint MAP estimation ${ }^{4}$ of $\left\{\theta_{k}\right\}$ and hi-res image x
- Tractability of optimization problem
o Faithfulness of resulting solutions to real-world constraints.

[^1]
Prior work and key research challenges

$$
\begin{aligned}
\mathcal{C}(\mathbf{x}, \boldsymbol{\theta}) & =\sum_{k=1}^{K}\left\|\mathbf{y}_{k}-\mathbf{D B T}\left(\boldsymbol{\theta}_{k}\right) \mathbf{x}\right\|_{p}, p \geq 1 \\
(\hat{\mathbf{x}}, \hat{\boldsymbol{\theta}}) & =\arg \min _{\mathbf{x}, \boldsymbol{\theta}} \mathcal{C}
\end{aligned}
$$

(1) Sequential estimation of $\left\{\boldsymbol{\theta}_{k}\right\}$ and hi-res image \mathbf{x}

- Sub-optimal
(2) Cost function minimization under different norms ${ }^{3} \rightarrow$ different noise models
(0) Joint MAP estimation ${ }^{4}$ of $\left\{\boldsymbol{\theta}_{k}\right\}$ and hi-res image \mathbf{x}

[^2]

Prior work and key research challenges

$$
\begin{aligned}
\mathcal{C}(\mathbf{x}, \boldsymbol{\theta}) & =\sum_{k=1}^{K}\left\|\mathbf{y}_{k}-\mathbf{D B T}\left(\boldsymbol{\theta}_{k}\right) \mathbf{x}\right\|_{p}, p \geq 1 \\
(\hat{\mathbf{x}}, \hat{\boldsymbol{\theta}}) & =\arg \min _{\mathbf{x}, \boldsymbol{\theta}} \mathcal{C}
\end{aligned}
$$

(1) Sequential estimation of $\left\{\boldsymbol{\theta}_{k}\right\}$ and hi-res image \mathbf{x}

- Sub-optimal
(2) Cost function minimization under different norms ${ }^{3} \rightarrow$ different noise models
(0) Joint MAP estimation ${ }^{4}$ of $\left\{\boldsymbol{\theta}_{k}\right\}$ and hi-res image \mathbf{x}
- Tractability of optimization problem
- Faithfulness of resulting solutions to real-world constraints.

[^3]
Addressing the challenges ${ }^{5}$

(1) Separable convexity via transformation of variables $\mathbf{f}_{k}: \boldsymbol{\theta}_{k} \mapsto \mathbf{T}\left(\boldsymbol{\theta}_{k}\right)$ - $\boldsymbol{\theta}$: change in pixel coordinates, \mathbf{T} : pixel intensity mapping

$$
\mathcal{C}\left(\mathbf{x},\left\{\mathbf{T}_{k}\right\}, \mathbf{B}\right)=\sum_{k=1}^{K}\left\|\mathbf{y}_{k}-\mathbf{D B T}_{k} \mathbf{x}\right\|_{p}+\lambda \rho(\mathbf{x}) .
$$

(a) Formulation of elegant and physically meaningful convex constraints.
\square

- Convergence guarantee to minima
- Robustness to initialization values.

[^4]CIC 2011

Addressing the challenges ${ }^{5}$

(1) Separable convexity via transformation of variables $\mathbf{f}_{k}: \boldsymbol{\theta}_{k} \mapsto \mathbf{T}\left(\boldsymbol{\theta}_{k}\right)$ - $\boldsymbol{\theta}$: change in pixel coordinates, \mathbf{T} : pixel intensity mapping

$$
\mathcal{C}\left(\mathbf{x},\left\{\mathbf{T}_{k}\right\}, \mathbf{B}\right)=\sum_{k=1}^{K}\left\|\mathbf{y}_{k}-\mathbf{D B T}_{k} \mathbf{x}\right\|_{p}+\lambda \rho(\mathbf{x}) .
$$

(2) Formulation of elegant and physically meaningful convex constraints.

- Convergence guarantee to minima
- Robustness to initialization values.

[^5]CIC 2011

Addressing the challenges ${ }^{5}$

(1) Separable convexity via transformation of variables $\mathbf{f}_{k}: \boldsymbol{\theta}_{k} \mapsto \mathbf{T}\left(\boldsymbol{\theta}_{k}\right)$ - $\boldsymbol{\theta}$: change in pixel coordinates, \mathbf{T} : pixel intensity mapping

$$
\mathcal{C}\left(\mathbf{x},\left\{\mathbf{T}_{k}\right\}, \mathbf{B}\right)=\sum_{k=1}^{K}\left\|\mathbf{y}_{k}-\mathbf{D B T}_{k} \mathbf{x}\right\|_{p}+\lambda \rho(\mathbf{x})
$$

(2) Formulation of elegant and physically meaningful convex constraints.

Why convexity?

- Convergence guarantee to minima
- Robustness to initialization values.

[^6]11/10/2011

Single-channel SR: Optimization problem

$$
\begin{array}{ll}
\underset{\mathbf{x},\left\{\mathbf{T}_{k}\right\}, \mathbf{B}}{\operatorname{minimize}} & \sum_{k=1}^{K}\left\|\mathbf{y}_{k}-\mathbf{D B T}_{k} \mathbf{x}\right\|_{p} \\
\text { subject to } & \mathbf{0} \leq \mathbf{x} \leq \mathbf{1} \\
& \mathbf{0} \leq \mathbf{D B T}_{k} \mathbf{x} \leq \mathbf{1}, \quad 1 \leq k \leq K \\
& \mathbf{T}_{k} \cdot \mathbf{1}=\mathbf{1}, \quad 1 \leq k \leq K \\
& \mathbf{B . 1}=\mathbf{1} \\
& \mathbf{t}_{k, i}^{T} \mathbf{m}_{k, i}=0, \quad 1 \leq i \leq n, \quad 1 \leq k \leq K \\
& \mathbf{b}_{i}^{T} \mathbf{e}_{i}=0, \quad 1 \leq i \leq n
\end{array}
$$

Single-channel SR: Optimization problem

$$
\begin{array}{ll}
\underset{\mathbf{x},\left\{\mathbf{T}_{k}\right\}, \mathbf{B}}{\operatorname{minimize}} & \sum_{k=1}^{K}\left\|\mathbf{y}_{k}-\mathbf{D B} \mathbf{T}_{k} \mathbf{x}\right\|_{p} \\
\text { subject to } & \mathbf{0} \leq \mathbf{x} \leq \mathbf{1} \\
& \mathbf{0} \leq \mathbf{D B} \mathbf{T}_{k} \mathbf{x} \leq \mathbf{1}, \quad 1 \leq k \leq K
\end{array}
$$

- Non-negative pixel values of hi-res and lo-res images
\square
- Membershid constraints: candidate set of non-zero entries in each
\square

Single-channel SR: Optimization problem

$$
\begin{array}{ll}
\underset{\mathbf{x},\left\{\mathbf{T}_{k}\right\}, \mathbf{B}}{\operatorname{minimize}} & \sum_{k=1}^{K}\left\|\mathbf{y}_{k}-\mathbf{D B} \mathbf{T}_{k} \mathbf{x}\right\|_{p} \\
\text { subject to } & 0 \leq \mathbf{x} \leq 1
\end{array}
$$

$$
\begin{aligned}
& \mathbf{T}_{k} \cdot \mathbf{1}=\mathbf{1}, \quad 1 \leq k \leq K \\
& \mathbf{B .} \mathbf{1}=\mathbf{1}
\end{aligned}
$$

- \mathbf{T}_{k} : interpolation matrix, \mathbf{B} : filtering with a local spatial kernel; each row should sum to 1

Single-channel SR: Optimization problem

$$
\underset{\mathbf{x},\left\{\mathbf{T}_{k}\right\}, \mathbf{B}}{\operatorname{minimize}} \quad \sum_{k=1}^{K}\left\|\mathbf{y}_{k}-\mathbf{D B T}_{k} \mathbf{x}\right\|_{p}
$$

subject to

$$
\begin{aligned}
& \mathbf{t}_{k, i}^{T} \mathbf{m}_{k, i}=0, \quad 1 \leq i \leq n, \quad 1 \leq k \leq K \\
& \mathbf{b}_{i}^{T} \mathbf{e}_{i}=0, \quad 1 \leq i \leq n
\end{aligned}
$$

- Non-negative pixel values of hi-res and lo-res images
- T. : internolation matriv \mathbf{R}. filtering with a local snatial kernel;
each row should sum to 1
- Membership constraints: candidate set of non-zero entries in each row of \mathbf{T}_{k} and \mathbf{B} known.
$\frac{\bullet^{\circ} \mid \mathrm{PAL} \text { (nformation Processing and Algorithms Laboratory }}{} 7$

Single-channel SR: Optimization problem

$$
\begin{array}{ll}
\underset{\mathbf{x},\left\{\mathbf{T}_{k}\right\}, \mathbf{B}}{\operatorname{minimize}} & \sum_{k=1}^{K}\left\|\mathbf{y}_{k}-\mathbf{D B T}_{k} \mathbf{x}\right\|_{p} \\
\text { subject to } & \mathbf{0} \leq \mathbf{x} \leq \mathbf{1} \\
& \mathbf{0} \leq \mathbf{D B T}_{k} \mathbf{x} \leq \mathbf{1}, \quad 1 \leq k \leq K \\
& \mathbf{T}_{k} \cdot \mathbf{1}=\mathbf{1}, \quad 1 \leq k \leq K \\
& \mathbf{B . 1}=\mathbf{1} \\
& \mathbf{t}_{k, i}^{T} \mathbf{m}_{k, i}=0, \quad 1 \leq i \leq n, \quad 1 \leq k \leq K \\
& \mathbf{b}_{i}^{T} \mathbf{e}_{i}=0, \quad 1 \leq i \leq n
\end{array}
$$

Color super-resolution: Prior work

(1) Treat RGB as independent channels \rightarrow no channel correlation
(2) Operate in a de-correlated color space ${ }^{6}$

- Assumption: luminance component of image carries its spatial features
- Chrominance components used mainly to improve image registration ${ }^{7,8}$
(0) Strong correlation among spatial high-frequency components across color channels ${ }^{9}$
- Related work: color image demosaicking ${ }^{10}$.

[^7]
Luminance regularization

- $\mathbf{S}_{r}, \mathbf{S}_{g}, \mathbf{S}_{b} \in \mathbb{R}^{3 n \times 3 n}$: gradient operators on red, green and blue color channels respectively
- Luminance regularization (for images with dominant luminance edges):

$$
\rho_{L}(\mathbf{x})=\left\|\left(\mathbf{S}_{r}-\mathbf{S}_{g}\right) \mathbf{x}\right\|_{1}+\left\|\left(\mathbf{S}_{g}-\mathbf{S}_{b}\right) \mathbf{x}\right\|_{1}+\left\|\left(\mathbf{S}_{r}-\mathbf{S}_{b}\right) \mathbf{x}\right\|_{1} \leq \epsilon_{L}
$$

- Modified optimization cost function:

$$
\mathcal{C}_{1}=\sum_{k=1}^{K}\left\|\mathbf{y}_{k}-\mathbf{D B T}_{k} \mathbf{x}\right\|_{p}+\alpha_{L} \rho_{L}(\mathbf{x})
$$

- Successful for color SR \rightarrow most images possess dominant luminance geometry.

Luminance regularization

- $\mathbf{S}_{r}, \mathbf{S}_{g}, \mathbf{S}_{b} \in \mathbb{R}^{3 n \times 3 n}$: gradient operators on red, green and blue color channels respectively
- Luminance regularization (for images with dominant luminance edges):

$$
\rho_{L}(\mathbf{x})=\left\|\left(\mathbf{S}_{r}-\mathbf{S}_{g}\right) \mathbf{x}\right\|_{1}+\left\|\left(\mathbf{S}_{g}-\mathbf{S}_{b}\right) \mathbf{x}\right\|_{1}+\left\|\left(\mathbf{S}_{r}-\mathbf{S}_{b}\right) \mathbf{x}\right\|_{1} \leq \epsilon_{L} .
$$

- Modified optimization cost function:

$$
\mathcal{C}_{1}=\sum_{k=1}^{K}\left\|\mathbf{y}_{k}-\mathbf{D B T}_{k} \mathbf{x}\right\|_{p}+\alpha_{L} \rho_{L}(\mathbf{x})
$$

- Successful for color $\mathrm{SR} \rightarrow$ most images possess dominant luminance geometry.

Motivation: Value of chrominance geometry

- Luminance edge $($ in $Y) \rightarrow$ present in R, G and B channels
- Chrominance edge $\rightarrow R, G$ and B channels with different high-frequency components

Motivation: Value of chrominance geometry

- Luminance edge (in Y) \rightarrow present in R, G and B channels

Motivation: Value of chrominance geometry

- Luminance edge (in Y) \rightarrow present in R, G and B channels
- Chrominance edge $\rightarrow \mathrm{R}, \mathrm{G}$ and B channels with different high-frequency components

Motivation: Value of chrominance geometry

- Luminance edge (in Y) \rightarrow present in R, G and B channels
- Chrominance edge $\rightarrow R, G$ and B channels with different high-frequency components
- Strong edge in $\mathrm{Cb} \rightarrow$ strong edge in B , mild edges in R and G .

Chrominance regularization: Intuition

- For images with significant chrominance geometry, edge correlation between RGB channels expected to be low
- Minimize edge correlation between channels in desired HR image:
- Incorporate into cost function as a regularization term:

Chrominance regularization: Intuition

- For images with significant chrominance geometry, edge correlation between RGB channels expected to be low
- Minimize edge correlation between channels in desired HR image:

$$
\left(\mathbf{S}_{r} \mathbf{x}\right)^{T}\left(\mathbf{S}_{g} \mathbf{x}\right)<\epsilon_{r g},\left(\mathbf{S}_{g} \mathbf{x}\right)^{T}\left(\mathbf{S}_{b} \mathbf{x}\right)<\epsilon_{g b},\left(\mathbf{S}_{b} \mathbf{x}\right)^{T}\left(\mathbf{S}_{r} \mathbf{x}\right)<\epsilon_{b r}
$$

- Incorporate into cost function as a regularization term:

Chrominance regularization: Intuition

- For images with significant chrominance geometry, edge correlation between RGB channels expected to be low
- Minimize edge correlation between channels in desired HR image:

$$
\left(\mathbf{S}_{r} \mathbf{x}\right)^{T}\left(\mathbf{S}_{g} \mathbf{x}\right)<\epsilon_{r g},\left(\mathbf{S}_{g} \mathbf{x}\right)^{T}\left(\mathbf{S}_{b} \mathbf{x}\right)<\epsilon_{g b},\left(\mathbf{S}_{b} \mathbf{x}\right)^{T}\left(\mathbf{S}_{r} \mathbf{x}\right)<\epsilon_{b r}
$$

- Incorporate into cost function as a regularization term:

$$
\rho_{C}(\mathbf{x})=\left(\mathbf{S}_{r} \mathbf{x}\right)^{T}\left(\mathbf{S}_{g} \mathbf{x}\right)+\left(\mathbf{S}_{g} \mathbf{x}\right)^{T}\left(\mathbf{S}_{b} \mathbf{x}\right)+\left(\mathbf{S}_{b} \mathbf{x}\right)^{T}\left(\mathbf{S}_{r} \mathbf{x}\right) .
$$

Role of regularization: Venn diagram interpretation

$$
\mathcal{C}=\sum_{k=1}^{K}\left\|\mathbf{y}_{k}-\mathbf{D B T}_{k} \mathbf{x}\right\|_{p}+\alpha_{L} \rho_{L}(\mathbf{x})+\alpha_{C} \rho_{C}(\mathbf{x})
$$

Role of regularization: Venn diagram interpretation

$$
\mathcal{C}=\sum_{k=1}^{K}\left\|\mathbf{y}_{k}-\mathbf{D B} \mathbf{T}_{k} \mathbf{x}\right\|_{p}
$$

Role of regularization: Venn diagram interpretation

$$
\mathcal{C}=\sum_{k=1}^{K}\left\|\mathbf{y}_{k}-\mathbf{D B} \mathbf{T}_{k} \mathbf{x}\right\|_{p}+\alpha_{L} \rho_{L}(\mathbf{x})
$$

Role of regularization: Venn diagram interpretation

$$
\mathcal{C}=\sum_{k=1}^{K}\left\|\mathbf{y}_{k}-\mathbf{D B} \mathbf{T}_{k} \mathbf{x}\right\|_{p}+\alpha_{L} \rho_{L}(\mathbf{x})+\alpha_{C} \rho_{C}(\mathbf{x})
$$

Contribution: Image-adaptive color super-resolution

$$
\begin{array}{ll}
\underset{\mathbf{x},\left\{\mathbf{T}_{k}\right\}, \mathbf{B}, \mathbf{S}_{r}, \mathbf{S}_{g}, \mathbf{S}_{b}}{\operatorname{minimize}} & \sum_{k=1}^{K}\left\|\mathbf{y}_{k}-\mathbf{D B} \mathbf{T}_{k} \mathbf{x}\right\|_{p}+\alpha_{L} \rho_{L}(\mathbf{x})+\alpha_{C} \rho_{C}(\mathbf{x}) \\
\text { subject to } & \mathbf{0} \leq \mathbf{x} \leq \mathbf{1} \\
& \mathbf{0} \leq \mathbf{D B} \mathbf{T}_{k} \mathbf{x} \leq \mathbf{1}, \quad 1 \leq k \leq K \\
& \mathbf{T}_{k} \cdot \mathbf{1}=\mathbf{1}, \quad 1 \leq k \leq K \\
& \mathbf{B} \cdot \mathbf{1}=\mathbf{1} \\
& \mathbf{t}_{k, i}^{T} \mathbf{m}_{k, i}=0, \quad 1 \leq i \leq 3 n, \quad 1 \leq k \leq K \\
& \mathbf{b}_{i}^{T} \mathbf{e}_{i}=0, \quad 1 \leq i \leq 3 n \\
& \mathbf{S}_{r} \cdot \mathbf{1}=\mathbf{0} \\
& \mathbf{S}_{g} \cdot \mathbf{1}=\mathbf{0} \\
& \mathbf{S}_{b} \cdot \mathbf{1}=\mathbf{0} \\
& \left(\mathbf{s}_{r, i}\right)^{T} \mathbf{f}_{r, i}=1, \quad 1 \leq i \leq 3 n \\
& \left(\mathbf{s}_{g, i}\right)^{T} \mathbf{f}_{g, i}=1, \quad 1 \leq i \leq 3 n \\
& \left(\mathbf{s}_{b, i}\right)^{T} \mathbf{f}_{b, i}=1, \quad 1 \leq i \leq 3 n
\end{array}
$$

Constraints on gradient operators

- Gradient operator \rightarrow high-pass filter \Rightarrow elements in each row must sum to zero:

$$
\mathbf{S}_{r} \cdot \mathbf{1}=\mathbf{0}, \quad \mathbf{S}_{g} \cdot \mathbf{1}=\mathbf{0}, \quad \mathbf{S}_{b} \cdot \mathbf{1}=\mathbf{0}
$$

- Membership constraints on $\mathbf{S}_{r}, \mathbf{S}_{g}, \mathbf{S}_{b}$ to prevent convergence to $\mathbf{0}$:
- $\mathbf{f}_{r, i}, \mathbf{f}_{g, i}, \mathbf{f}_{b, i}$ generated from initial gradient operator
- Element in \mathbf{S} takes positive, negative or zero value \rightarrow corresponding entry in f equals 1 , -1 or 0 respectively.

Constraints on gradient operators

- Gradient operator \rightarrow high-pass filter \Rightarrow elements in each row must sum to zero:

$$
\mathbf{S}_{r} \cdot \mathbf{1}=\mathbf{0}, \quad \mathbf{S}_{g} \cdot \mathbf{1}=\mathbf{0}, \quad \mathbf{S}_{b} \cdot \mathbf{1}=\mathbf{0}
$$

- Membership constraints on $\mathbf{S}_{r}, \mathbf{S}_{g}, \mathbf{S}_{b}$ to prevent convergence to $\mathbf{0}$:

$$
\left(\mathbf{s}_{r, i}\right)^{T} \mathbf{f}_{r, i}=1,\left(\mathbf{s}_{g, i}\right)^{T} \mathbf{f}_{g, i}=1,\left(\mathbf{s}_{b, i}\right)^{T} \mathbf{f}_{b, i}=1,1 \leq i \leq 3 n
$$

- $\mathbf{f}_{r, i}, \mathbf{f}_{g, i}, \mathbf{f}_{b, i}$ generated from initial gradient operator
- Element in \mathbf{S} takes positive, negative or zero value \rightarrow corresponding entry in f equals 1 , -1 or 0 respectively.

Constraints on gradient operators

- Gradient operator \rightarrow high-pass filter \Rightarrow elements in each row must sum to zero:

$$
\mathbf{S}_{r} \cdot \mathbf{1}=\mathbf{0}, \quad \mathbf{S}_{g} \cdot \mathbf{1}=\mathbf{0}, \quad \mathbf{S}_{b} \cdot \mathbf{1}=\mathbf{0}
$$

- Membership constraints on $\mathbf{S}_{r}, \mathbf{S}_{g}, \mathbf{S}_{b}$ to prevent convergence to $\mathbf{0}$:

$$
\left(\mathbf{s}_{r, i}\right)^{T} \mathbf{f}_{r, i}=1,\left(\mathbf{s}_{g, i}\right)^{T} \mathbf{f}_{g, i}=1,\left(\mathbf{s}_{b, i}\right)^{T} \mathbf{f}_{b, i}=1,1 \leq i \leq 3 n
$$

- $\mathbf{f}_{r, i}, \mathbf{f}_{g, i}, \mathbf{f}_{b, i}$ generated from initial gradient operator
- Element in \mathbf{S} takes positive, negative or zero value \rightarrow corresponding entry in \mathbf{f} equals $1,-1$ or 0 respectively.

How to choose α_{C} and α_{L} ?

- Estimate degree of image chrominance geometry

- α_{C} and α_{L} assigned complementary weights: $\alpha_{C}=\alpha_{\max }-\alpha_{L}$.

How to choose α_{C} and α_{L} ?

- Estimate degree of image chrominance geometry

$$
\begin{gathered}
\beta=\frac{1}{2}\left(\frac{\left\|\mathbf{H}_{1} \mathbf{x}_{\mathrm{cb}}\right\|+\left\|\mathbf{H}_{1} \mathbf{x}_{\mathrm{cr}}\right\|}{\left\|\mathbf{H}_{1} \mathbf{x}_{\mathrm{Y}}\right\|}+\frac{\left\|\mathbf{H}_{2} \mathbf{x}_{\mathrm{cb}}\right\|+\left\|\mathbf{H}_{2} \mathbf{x}_{\mathrm{c}}\right\|}{\left\|\mathbf{H}_{2} \mathbf{x}_{\mathrm{Y}}\right\|}\right) . \\
\mathbf{h}_{1}=\left(\begin{array}{ccc}
3 & 10 & 3 \\
0 & 0 & 0 \\
-3 & -10 & -3
\end{array}\right), \mathbf{h}_{2}=\left(\begin{array}{ccc}
3 & 0 & -3 \\
10 & 0 & -10 \\
3 & 0 & -3
\end{array}\right) .
\end{gathered}
$$

- α_{C} and α_{L} assigned complementary weights: $\alpha_{C}=\alpha_{\max }-\alpha_{L}$

How to choose α_{C} and α_{L} ?

- Estimate degree of image chrominance geometry

$$
\begin{gathered}
\beta=\frac{1}{2}\left(\frac{\left\|\mathbf{H}_{1} \mathbf{x}_{\mathrm{Cb}}\right\|+\left\|\mathbf{H}_{1} \mathbf{x}_{\mathrm{Cr}}\right\|}{\left\|\mathbf{H}_{1} \mathbf{x}_{\mathrm{Y}}\right\|}+\frac{\left\|\mathbf{H}_{2} \mathbf{x}_{\mathrm{Cb}}\right\|+\left\|\mathbf{H}_{2} \mathbf{x}_{\mathrm{Cr}}\right\|}{\left\|\mathbf{H}_{2} \mathbf{x}_{\mathrm{Y}}\right\|}\right) . \\
\mathbf{h}_{1}=\left(\begin{array}{ccc}
3 & 10 & 3 \\
0 & 0 & 0 \\
-3 & -10 & -3
\end{array}\right), \mathbf{h}_{2}=\left(\begin{array}{ccc}
3 & 0 & -3 \\
10 & 0 & -10 \\
3 & 0 & -3
\end{array}\right) .
\end{gathered}
$$

- $\beta \downarrow \Rightarrow \alpha_{C} \downarrow, \alpha_{L} \uparrow$
- $\beta \uparrow \Rightarrow \alpha_{C} \uparrow, \alpha_{L} \downarrow$
- α_{C} and α_{L} assigned complementary weights: $\alpha_{C}=\alpha_{\max }-\alpha_{L}$

How to choose α_{C} and α_{L} ?

- Estimate degree of image chrominance geometry

$$
\begin{gathered}
\beta=\frac{1}{2}\left(\frac{\left\|\mathbf{H}_{1} \mathbf{x}_{\mathrm{Cb}}\right\|+\left\|\mathbf{H}_{1} \mathbf{x}_{\mathrm{Cr}}\right\|}{\left\|\mathbf{H}_{1} \mathbf{x}_{\mathrm{Y}}\right\|}+\frac{\left\|\mathbf{H}_{2} \mathbf{x}_{\mathrm{Cb}}\right\|+\left\|\mathbf{H}_{2} \mathbf{x}_{\mathrm{cr}}\right\|}{\left\|\mathbf{H}_{2} \mathbf{x}_{\mathrm{Y}}\right\|}\right) . \\
\mathbf{h}_{1}=\left(\begin{array}{ccc}
3 & 10 & 3 \\
0 & 0 & 0 \\
-3 & -10 & -3
\end{array}\right), \mathbf{h}_{2}=\left(\begin{array}{ccc}
3 & 0 & -3 \\
10 & 0 & -10 \\
3 & 0 & -3
\end{array}\right) .
\end{gathered}
$$

- $\beta \downarrow \Rightarrow \alpha_{C} \downarrow, \alpha_{L} \uparrow$
- $\beta \uparrow \Rightarrow \alpha_{C} \uparrow, \alpha_{L} \downarrow$
- α_{C} and α_{L} assigned complementary weights: $\alpha_{C}=\alpha_{\max }-\alpha_{L}$.

Choice of β and α_{C}

(a) 0.584

(d) 0.483

(g) 0.425
(h) 0.828

(c) 0.294

(f) 0.503

(i) 0.975

Figure: Mapping from β to α_{c}.

Figure: Threshold: $\beta_{0}=0.75$.

Results: I

(a) Orig. hi-res image.

(Farsiu).
walle).

Results: II

(a) Interp. Io-res image.

(d) Lum. and

(b) l_{1}-norm ρ_{L} (Farsiu)

(e) Proposed framework (f)

(c) l_{2}-norm ρ_{L} (Menon)

Image-adaptive framework.
\qquad

Conclusions

(1) Color super-resolution framework that simultaneously exploits spatial and amplitude information

- Novel chrominance regularization
- Image-adaptive selection of optimization parameters
(2) Constrained convex optimization framework
- Tractable algorithms.

Thank you

Questions?

Backup Slides

High-pass filter constraints for gradient operators

$$
H\left(\omega_{1}, \omega_{2}\right)=\sum_{\left(n_{1}, n_{2}\right) \in \mathcal{R}} h\left[n_{1}, n_{2}\right] e^{-j \omega_{1} n_{1}} e^{-j \omega_{2} n_{2}} .
$$

$\left[\begin{array}{llllllllll} \\ h_{-1,-1}, h_{0,-1}, h_{1,-1} & \ldots & 0 & 0 & 0 & \ldots & h_{-1,0}, h_{0,0}, h_{1,0} & \ldots & 0 & 0\end{array} 0 \ldots h_{-1,1}, h_{0,1}, h_{1,1}\right]\left[\begin{array}{c}1 \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ 1\end{array}\right]=\left[\begin{array}{c}0 \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ 0\end{array}\right]$

Quantitative comparison of performance

$$
J_{i}=10\left[\log \left(\frac{\sum_{k=1}^{K}\left\|\mathbf{y}-\mathbf{D B T}_{k} \mathbf{x}_{i}\right\|_{2}}{\sum_{k=1}^{K}\left\|\mathbf{y}-\mathbf{D B T}_{k} \mathbf{x}\right\|_{2}}\right)+(1-\beta) \log \frac{\rho_{L}\left(\mathbf{x}_{i}\right)}{\rho_{L}(\mathbf{x})}+\beta \log \frac{\rho_{C}\left(\mathbf{x}_{i}\right)}{\rho_{C}(\mathbf{x})}\right]
$$

- Comparison with three competitive methods:
(1) $i=1: \alpha_{L}$ with l_{1}-norm ${ }^{11}$
(3) $i=2: \alpha_{L}$ with l_{2}-norm ${ }^{12}$
(3) $i=3$: luminance and chrominance separately ${ }^{13}$
- $J>0 \Rightarrow \mathrm{~dB}$ gain using proposed approach; $J<0 \Rightarrow$ competitive method better.

Image	J_{1}	J_{2}	J_{3}
(a)	0.182	1.599	16.469
(b)	7.900	6.562	26.856
(c)	-0.493	-1.153	17.711
(d)	0.404	-0.979	12.196
(e)	7.902	4.674	21.647
(f)	7.222	5.260	20.804
(g)	9.806	8.388	21.588
(h)	7.857	6.208	25.863
(i)	12.110	10.899	27.805

[^8]11/10/2011

Quantitative comparison of performance

$$
J_{i}=10\left[\log \left(\frac{\sum_{k=1}^{K}\left\|\mathbf{y}-\mathbf{D B T}_{k} \mathbf{x}_{i}\right\|_{2}}{\sum_{k=1}^{K}\left\|\mathbf{y}-\mathbf{D B T}_{k} \mathbf{x}\right\|_{2}}\right)+(1-\beta) \log \frac{\rho_{L}\left(\mathbf{x}_{i}\right)}{\rho_{L}(\mathbf{x})}+\beta \log \frac{\rho_{C}\left(\mathbf{x}_{i}\right)}{\rho_{C}(\mathbf{x})}\right]
$$

- Comparison with three competitive methods:
(1) $i=1: \alpha_{L}$ with l_{1}-norm ${ }^{11}$
(2) $i=2: \alpha_{L}$ with l_{2}-norm ${ }^{12}$
(3) $i=3$: luminance and chrominance separately ${ }^{13}$
- $J>0 \Rightarrow \mathrm{~dB}$ gain using proposed approach; $J<0 \Rightarrow$ competitive method better.

Image	J_{1}	J_{2}	J_{3}
(a)	0.182	1.599	16.469
(b)	7.900	6.562	26.856
(c)	-0.493	-1.153	17.711
(d)	0.404	-0.979	12.196
(e)	7.902	4.674	21.647
(f)	7.222	5.260	20.804
(g)	9.806	8.388	21.588
(h)	7.857	6.208	25.863
(i)	12.110	10.899	27.805

[^9]
Quantitative comparison of performance

$$
J_{i}=10\left[\log \left(\frac{\sum_{k=1}^{K}\left\|\mathbf{y}-\mathbf{D B T}_{k} \mathbf{x}_{i}\right\|_{2}}{\sum_{k=1}^{K}\left\|\mathbf{y}-\mathbf{D B T}_{k} \mathbf{x}\right\|_{2}}\right)+(1-\beta) \log \frac{\rho_{L}\left(\mathbf{x}_{i}\right)}{\rho_{L}(\mathbf{x})}+\beta \log \frac{\rho_{C}\left(\mathbf{x}_{i}\right)}{\rho_{C}(\mathbf{x})}\right]
$$

- Comparison with three competitive methods:
(1) $i=1: \alpha_{L}$ with l_{1}-norm ${ }^{11}$
(2) $i=2: \alpha_{L}$ with l_{2}-norm ${ }^{12}$
(3) $i=3$: luminance and chrominance separately ${ }^{13}$
- $J>0 \Rightarrow \mathrm{~dB}$ gain using proposed approach; $J<0 \Rightarrow$ competitive method better.

Image	J_{1}	J_{2}	J_{3}
(a)	0.182	1.599	16.469
(b)	$\mathbf{7 . 9 0 0}$	$\mathbf{6 . 5 6 2}$	$\mathbf{2 6 . 8 5 6}$
(c)	-0.493	-1.153	17.711
(d)	0.404	-0.979	12.196
(e)	7.902	4.674	21.647
(f)	7.222	5.260	20.804
(g)	9.806	8.388	21.588
(h)	$\mathbf{7 . 8 5 7}$	$\mathbf{6 . 2 0 8}$	$\mathbf{2 5 . 8 6 3}$
(i)	$\mathbf{1 2 . 1 1 0}$	$\mathbf{1 0 . 8 9 9}$	$\mathbf{2 7 . 8 0 5}$

[^10]
[^0]: ${ }^{2}$ Mann and Picard, IEEE Trans. Image Process., 1997

[^1]: $3_{\text {Farsiu et. al., IEEE Trans. Image Process., } 2004}$

[^2]: ${ }^{3}$ Farsiu et. al., IEEE Trans. Image Process., 2004
 ${ }^{4}$ Hardie et. al., IEEE Trans. Image Process., 1997

[^3]: ${ }^{3}$ Farsiu et. al., IEEE Trans. Image Process., 2004
 $4_{\text {Hardie et. al., IEEE Trans. Image Process., } 1997}$

[^4]: $5_{\text {Monga and Srinivas, IEEE Asilomar Conf., } 2010}$
 11/10/2011

[^5]: ${ }^{5}$ Monga and Srinivas, IEEE Asilomar Conf., 2010
 11/10/2011

[^6]: ${ }^{5}$ Monga and Srinivas, IEEE Asilomar Conf., 2010

[^7]: ${ }^{6}$ Vandewalle et al., Electronic Imaging, 2007
 ${ }^{7}$ Shah and Zakhor, IEEE Trans. Image Process., 1999
 ${ }^{8}$ Tom and Katsaggelos, IEEE Trans. Image Process., 2001
 ${ }^{9}$ Farsiu et al, IEEE Trans. Image Process., 2006
 10 Menon and Calvagno, IEEE Trans. Image Process., 2009

[^8]: ${ }^{11}$ Farsiu et al., IEEE Trans. Image Process., 2006
 12 Menon et al., IEEE Trans. Image Process., 2009
 ${ }^{13}$ Vandewalle et al., SPIE 2007

[^9]: $11_{\text {Farsiu et al., IEEE Trans. Image Process., } 2006}$
 12 Menon et al., IEEE Trans. Image Process., 2009
 13 Vandewalle et al., SPIE 2007

[^10]: ${ }^{11}$ Farsiu et al., IEEE Trans. Image Process., 2006
 12 Menon et al., IEEE Trans. Image Process., 2009
 13 Vandewalle et al., SPIE 2007

