Image-adaptive Color Super-resolution

Umamahesh Srinivas Xuan Mo Vishal Monga Pennsylvania State University, USA

> Manu Parmar Qualcomm MEMS Technologies, San Jose, CA

Color and Imaging Conference 2011

November 10, 2011

Outline

- Gray-scale super-resolution (SR): State-of-the-art
- Color SR: Background and motivation
- Ontribution: Image-adaptive color super-resolution
- Results

Digital image acquisition system¹

 $[\]mathbf{1}_{\mathsf{Park}}$ et al., IEEE Signal Process. Mag., 2003

Model of the forward imaging process

$$\mathbf{y}_k = \mathbf{DBT}(\boldsymbol{\theta}_k)\mathbf{x} + \mathbf{n}_k, \quad 1 \le k \le K$$

CIC 2011

- ullet $\mathbf{x} \in \mathbb{R}^n o \mathsf{unknown}$ hi-res image
- $\mathbf{y}_k \in \mathbb{R}^m \ (m < n) \to k$ -th lo-res image
- $\mathbf{T}(\boldsymbol{\theta}_k) \in \mathbb{R}^{n \times n} \to k$ -th geometric warping matrix
 - $oldsymbol{ heta}_k$ obtained from projective homography matrix 2
- $oldsymbol{\mathbf{B}} \in \mathbb{R}^{n imes n}
 ightarrow \mathsf{camera} \ \mathsf{optical} \ \mathsf{blur}$
- $oldsymbol{o}$ $\mathbf{D} \in \mathbb{R}^{m imes n} o \operatorname{downsampling}$ matrix of 1s and 0s
- $\mathbf{n}_k \in \mathbb{R}^m \to \mathsf{noise}$ vector that corrupts \mathbf{y}_k .

 $^{^{2}\}mathrm{Mann}$ and Picard, IEEE Trans. Image Process., 1997

$$\mathcal{C}(\mathbf{x}, \boldsymbol{\theta}) = \sum_{k=1}^{K} \|\mathbf{y}_k - \mathbf{DBT}(\boldsymbol{\theta}_k)\mathbf{x}\|_p, p \ge 1$$
$$(\hat{\mathbf{x}}, \hat{\boldsymbol{\theta}}) = \arg\min_{\mathbf{x}, \boldsymbol{\theta}} \mathcal{C}$$

- Sequential estimation of $\{ \boldsymbol{\theta}_k \}$ and hi-res image \mathbf{x} Sub-optimal
- $\hbox{ @ Cost function minimization under different norms}^3 \rightarrow \hbox{ different noise models}$
- ① Joint MAP estimation of $\{\theta_k\}$ and hi-res image x
 - Tractability of optimization problem
 - Faithfulness of resulting solutions to real-world constraints

³ Farsiu et. al., IEEE Trans. Image Process., 2004

⁴ Hardie et. al., IEEE Trans. Image Process., 1997

$$C(\mathbf{x}, \boldsymbol{\theta}) = \sum_{k=1}^{K} \|\mathbf{y}_k - \mathbf{DBT}(\boldsymbol{\theta}_k)\mathbf{x}\|_p, p \ge 1$$
$$(\hat{\mathbf{x}}, \hat{\boldsymbol{\theta}}) = \arg\min_{\mathbf{x}, \boldsymbol{\theta}} C$$

- Sequential estimation of $\{\theta_k\}$ and hi-res image x
 Sub-optimal
- $\hbox{ @ Cost function minimization under different norms}^3 \rightarrow \hbox{ different noise models}$
- ① Joint MAP estimation of $\{oldsymbol{ heta}_k\}$ and hi-res image \mathbf{x}
 - Tractability of optimization problem
 - Faithfulness of resulting solutions to real-world constraints

Farsiu et. al., IEEE Trans. Image Process., 2004

⁴ Hardie et. al., IEEE Trans. Image Process., 1997

$$C(\mathbf{x}, \boldsymbol{\theta}) = \sum_{k=1}^{K} \|\mathbf{y}_k - \mathbf{DBT}(\boldsymbol{\theta}_k)\mathbf{x}\|_p, p \ge 1$$
$$(\hat{\mathbf{x}}, \hat{\boldsymbol{\theta}}) = \arg\min_{\mathbf{x}, \boldsymbol{\theta}} C$$

- Sequential estimation of $\{m{ heta}_k\}$ and hi-res image ${f x}$ Sub-optimal
- $\hbox{ @ Cost function minimization under different norms}^3 \rightarrow \hbox{ different noise models}$
- **3** Joint MAP estimation of $\{\theta_k\}$ and hi-res image x
 - Tractability of optimization problem
 - Faithfulness of resulting solutions to real-world constraints

Farsiu et. al., IEEE Trans. Image Process., 2004 Hardie et. al., IEEE Trans. Image Process., 1997

$$C(\mathbf{x}, \boldsymbol{\theta}) = \sum_{k=1}^{K} \|\mathbf{y}_k - \mathbf{DBT}(\boldsymbol{\theta}_k)\mathbf{x}\|_p, p \ge 1$$
$$(\hat{\mathbf{x}}, \hat{\boldsymbol{\theta}}) = \arg\min_{\mathbf{x}, \boldsymbol{\theta}} C$$

- Sequential estimation of $\{oldsymbol{ heta}_k\}$ and hi-res image ${f x}$
 - Sub-optimal
- $\hbox{ @ Cost function minimization under different norms}^3 \rightarrow \hbox{ different noise models}$
- **3** Joint MAP estimation of $\{\theta_k\}$ and hi-res image ${f x}$
 - Tractability of optimization problem
 - Faithfulness of resulting solutions to real-world constraints

Farsiu et. al., IEEE Trans. Image Process., 2004

⁴Hardie et. al., IEEE Trans. Image Process., 1997

$$C(\mathbf{x}, \boldsymbol{\theta}) = \sum_{k=1}^{K} \|\mathbf{y}_k - \mathbf{DBT}(\boldsymbol{\theta}_k)\mathbf{x}\|_p, p \ge 1$$
$$(\hat{\mathbf{x}}, \hat{\boldsymbol{\theta}}) = \arg\min_{\mathbf{x}, \boldsymbol{\theta}} C$$

- **①** Sequential estimation of $\{m{ heta}_k\}$ and hi-res image ${f x}$
 - Sub-optimal
- $\hbox{ @ Cost function minimization under different norms}^3 \rightarrow \hbox{ different noise models}$
- **3** Joint MAP estimation of $\{\theta_k\}$ and hi-res image ${f x}$
 - Tractability of optimization problem
 - Faithfulness of resulting solutions to real-world constraints.

Farsiu et. al., IEEE Trans. Image Process., 2004

⁴Hardie et. al., IEEE Trans. Image Process., 1997

Addressing the challenges⁵

- **①** Separable convexity via transformation of variables $\mathbf{f}_k: \boldsymbol{\theta}_k \mapsto \mathbf{T}(\boldsymbol{\theta}_k)$
 - $oldsymbol{ heta}$: change in pixel coordinates, $oldsymbol{\mathrm{T}}$: pixel intensity mapping

$$\mathcal{C}(\mathbf{x}, \{\mathbf{T}_k\}, \mathbf{B}) = \sum_{k=1}^K \|\mathbf{y}_k - \mathbf{D}\mathbf{B}\mathbf{T}_k\mathbf{x}\|_p + \lambda \rho(\mathbf{x}).$$

Formulation of elegant and physically meaningful convex constraints
Why convexity?

- Convergence guarantee to minima
- Robustness to initialization values.

⁵Monga and Srinivas, IEEE Asilomar Conf., 2010

Addressing the challenges⁵

- **①** Separable convexity via transformation of variables $\mathbf{f}_k: \boldsymbol{\theta}_k \mapsto \mathbf{T}(\boldsymbol{\theta}_k)$
 - $oldsymbol{ heta}$: change in pixel coordinates, $oldsymbol{\mathrm{T}}$: pixel intensity mapping

$$C(\mathbf{x}, \{\mathbf{T}_k\}, \mathbf{B}) = \sum_{k=1}^{K} \|\mathbf{y}_k - \mathbf{D}\mathbf{B}\mathbf{T}_k\mathbf{x}\|_p + \lambda \rho(\mathbf{x}).$$

Formulation of elegant and physically meaningful convex constraints.

Why convexity?

- Convergence guarantee to minima
- Robustness to initialization values.

⁵Monga and Srinivas, IEEE Asilomar Conf., 2010

Addressing the challenges⁵

- **①** Separable convexity via transformation of variables $\mathbf{f}_k: \boldsymbol{\theta}_k \mapsto \mathbf{T}(\boldsymbol{\theta}_k)$
 - $oldsymbol{ heta}$: change in pixel coordinates, $oldsymbol{\mathrm{T}}$: pixel intensity mapping

$$C(\mathbf{x}, \{\mathbf{T}_k\}, \mathbf{B}) = \sum_{k=1}^{K} \|\mathbf{y}_k - \mathbf{D}\mathbf{B}\mathbf{T}_k\mathbf{x}\|_p + \lambda \rho(\mathbf{x}).$$

Formulation of elegant and physically meaningful convex constraints.

Why convexity?

- Convergence guarantee to minima
- Robustness to initialization values.

⁵Monga and Srinivas, IEEE Asilomar Conf., 2010

$$\begin{split} & \underset{\mathbf{x}, \{\mathbf{T}_k\}, \mathbf{B}}{\text{minimize}} & \sum_{k=1}^K \|\mathbf{y}_k - \mathbf{D}\mathbf{B}\mathbf{T}_k \mathbf{x}\|_p \\ & \text{subject to} & \mathbf{0} \leq \mathbf{x} \leq \mathbf{1} \\ & \mathbf{0} \leq \mathbf{D}\mathbf{B}\mathbf{T}_k \mathbf{x} \leq \mathbf{1}, \quad 1 \leq k \leq K \\ & \mathbf{T}_k. \mathbf{1} = \mathbf{1}, \quad 1 \leq k \leq K \\ & \mathbf{B}. \mathbf{1} = \mathbf{1} \\ & \mathbf{t}_{k,i}^T \mathbf{m}_{k,i} = 0, \quad 1 \leq i \leq n, \quad 1 \leq k \leq K \\ & \mathbf{b}_i^T \mathbf{e}_i = 0, \quad 1 \leq i \leq n \end{split}.$$

$$\begin{aligned} & \underset{\mathbf{x}, \{\mathbf{T}_k\}, \mathbf{B}}{\text{minimize}} & & \sum_{k=1}^K \|\mathbf{y}_k - \mathbf{D}\mathbf{B}\mathbf{T}_k \mathbf{x}\|_p \\ & \text{subject to} & & \mathbf{0} \leq \mathbf{x} \leq \mathbf{1} \\ & & & \mathbf{0} \leq \mathbf{D}\mathbf{B}\mathbf{T}_k \mathbf{x} \leq \mathbf{1}, \quad 1 \leq k \leq K \\ & & & & \mathbf{T}_k.\mathbf{1} = \mathbf{1}, \quad 1 \leq k \leq K \\ & & & & & \mathbf{B}.\mathbf{1} = \mathbf{1} \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & \\ & & \\ & & \\ &$$

- Non-negative pixel values of hi-res and lo-res images
- T_k: interpolation matrix, B: filtering with a local spatial kernel;
 each row should sum to 1
- Membership constraints: candidate set of non-zero entries in each row of T_k and B known.

$$\begin{split} & \underset{\mathbf{x}, \{\mathbf{T}_k\}, \mathbf{B}}{\text{minimize}} & \sum_{k=1}^K \|\mathbf{y}_k - \mathbf{D}\mathbf{B}\mathbf{T}_k \mathbf{x}\|_p \\ & \text{subject to} & 0 \leq \mathbf{x} \leq \mathbf{1} \\ & 0 \leq \mathbf{D}\mathbf{B}\mathbf{T}_k \mathbf{x} \leq \mathbf{1}, \quad 1 \leq k \leq K \\ & \mathbf{T}_k.\mathbf{1} = \mathbf{1}, \quad 1 \leq k \leq K \\ & \mathbf{B}.\mathbf{1} = \mathbf{1} \\ & \mathbf{t}_{k,i}^T \mathbf{m}_{k,i} = 0, \quad 1 \leq i \leq n, \quad 1 \leq k \leq K \\ & \mathbf{b}_i^T \mathbf{e}_i = 0, \quad 1 \leq i \leq n \end{split}$$

- Non-negative pixel values of hi-res and lo-res images
- T_k : interpolation matrix, B: filtering with a local spatial kernel; each row should sum to 1
- Membership constraints: candidate set of non-zero entries in each row of T_k and B known.

$$\begin{split} & \underset{\mathbf{x}, \{\mathbf{T}_k\}, \mathbf{B}}{\text{minimize}} & \sum_{k=1}^K \|\mathbf{y}_k - \mathbf{D}\mathbf{B}\mathbf{T}_k \mathbf{x}\|_p \\ & \text{subject to} & 0 \leq \mathbf{x} \leq 1 \\ & 0 \leq \mathbf{D}\mathbf{B}\mathbf{T}_k \mathbf{x} \leq 1, \quad 1 \leq k \leq K \\ & \mathbf{T}_k.1 = 1, \quad 1 \leq k \leq K \\ & \mathbf{B}.1 = 1 \\ & \mathbf{t}_{k,i}^T \mathbf{m}_{k,i} = 0, \quad 1 \leq i \leq n, \quad 1 \leq k \leq K \\ & \mathbf{b}_i^T \mathbf{e}_i = 0, \quad 1 \leq i \leq n \end{split}$$

- Non-negative pixel values of hi-res and lo-res images
- $oldsymbol{ ext{T}}_k$: interpolation matrix, $oldsymbol{ ext{B}}$: filtering with a local spatial kernel each row should sum to 1
- Membership constraints: candidate set of non-zero entries in each row of T_k and B known.

$$\begin{split} & \underset{\mathbf{x}, \{\mathbf{T}_k\}, \mathbf{B}}{\text{minimize}} & \sum_{k=1}^K \|\mathbf{y}_k - \mathbf{D}\mathbf{B}\mathbf{T}_k \mathbf{x}\|_p \\ & \text{subject to} & \mathbf{0} \leq \mathbf{x} \leq \mathbf{1} \\ & \mathbf{0} \leq \mathbf{D}\mathbf{B}\mathbf{T}_k \mathbf{x} \leq \mathbf{1}, \quad 1 \leq k \leq K \\ & \mathbf{T}_k. \mathbf{1} = \mathbf{1}, \quad 1 \leq k \leq K \\ & \mathbf{B}. \mathbf{1} = \mathbf{1} \\ & \mathbf{t}_{k,i}^T \mathbf{m}_{k,i} = 0, \quad 1 \leq i \leq n, \quad 1 \leq k \leq K \\ & \mathbf{b}_i^T \mathbf{e}_i = 0, \quad 1 \leq i \leq n \end{split}.$$

Color super-resolution: Prior work

- lacktriangledown Treat RGB as independent channels ightarrow no channel correlation
- Operate in a de-correlated color space⁶
 - Assumption: luminance component of image carries its spatial features
 - Chrominance components used mainly to improve image registration^{7,8}
- Strong correlation among spatial high-frequency components across color channels⁹
 - Related work: color image demosaicking¹⁰.

⁶Vandewalle et al., Electronic Imaging, 2007

⁷Shah and Zakhor, IEEE Trans. Image Process., 1999

⁸ Tom and Katsaggelos, IEEE Trans. Image Process., 2001

⁹ Farsiu et al, IEEE Trans. Image Process., 2006

Menon and Calvagno, IEEE Trans. Image Process., 2009

Luminance regularization

- $\mathbf{S}_r, \mathbf{S}_g, \mathbf{S}_b \in \mathbb{R}^{3n \times 3n}$: gradient operators on red, green and blue color channels respectively
- Luminance regularization (for images with dominant luminance edges):

$$\rho_L(\mathbf{x}) = \|(\mathbf{S}_r - \mathbf{S}_g)\mathbf{x}\|_1 + \|(\mathbf{S}_g - \mathbf{S}_b)\mathbf{x}\|_1 + \|(\mathbf{S}_r - \mathbf{S}_b)\mathbf{x}\|_1 \le \epsilon_L.$$

Modified optimization cost function:

$$C_1 = \sum_{k=1}^{K} \|\mathbf{y}_k - \mathbf{DBT}_k \mathbf{x}\|_p + \alpha_L \rho_L(\mathbf{x}).$$

 \bullet Successful for color SR \to most images possess dominant luminance geometry.

Luminance regularization

- $\mathbf{S}_r, \mathbf{S}_g, \mathbf{S}_b \in \mathbb{R}^{3n \times 3n}$: gradient operators on red, green and blue color channels respectively
- Luminance regularization (for images with dominant luminance edges):

$$\rho_L(\mathbf{x}) = \|(\mathbf{S}_r - \mathbf{S}_g)\mathbf{x}\|_1 + \|(\mathbf{S}_g - \mathbf{S}_b)\mathbf{x}\|_1 + \|(\mathbf{S}_r - \mathbf{S}_b)\mathbf{x}\|_1 \le \epsilon_L.$$

Modified optimization cost function:

$$C_1 = \sum_{k=1}^K \|\mathbf{y}_k - \mathbf{DBT}_k \mathbf{x}\|_p + \alpha_L \rho_L(\mathbf{x}).$$

 \bullet Successful for color SR \to most images possess dominant luminance geometry.

- ullet Luminance edge (in Y) o present in R, G and B channels
- Chrominance edge → R, G and B channels with different high-frequency components
 - ullet Strong edge in Cb o strong edge in B, mild edges in R and G

11/10/2011 CIC 2011 Information Processing and Algorithms Laborator

- Luminance edge (in Y) \rightarrow present in R, G and B channels
- Chrominance edge → R, G and B channels with different high-frequency components
 - ullet Strong edge in Cb o strong edge in B, mild edges in R and G.

- Luminance edge (in Y) \rightarrow present in R, G and B channels
- ullet Chrominance edge o R, G and B channels with different high-frequency components
 - ullet Strong edge in Cb o strong edge in B, mild edges in R and G

- Luminance edge (in Y) \rightarrow present in R, G and B channels
- \bullet Chrominance edge \to R, G and B channels with different high-frequency components
 - \bullet Strong edge in Cb \to strong edge in B, mild edges in R and G.

Chrominance regularization: Intuition

- For images with significant chrominance geometry, edge correlation between RGB channels expected to be low
- Minimize edge correlation between channels in desired HR image:

$$(\mathbf{S}_r\mathbf{x})^T(\mathbf{S}_g\mathbf{x}) < \epsilon_{rg}, (\mathbf{S}_g\mathbf{x})^T(\mathbf{S}_b\mathbf{x}) < \epsilon_{gb}, (\mathbf{S}_b\mathbf{x})^T(\mathbf{S}_r\mathbf{x}) < \epsilon_{br}.$$

Incorporate into cost function as a regularization term:

$$\rho_C(\mathbf{x}) = (\mathbf{S}_r \mathbf{x})^T (\mathbf{S}_g \mathbf{x}) + (\mathbf{S}_g \mathbf{x})^T (\mathbf{S}_b \mathbf{x}) + (\mathbf{S}_b \mathbf{x})^T (\mathbf{S}_r \mathbf{x}).$$

11/10/2011 CIC 2011 Information Processing and Algorithms Laboratory 1

Chrominance regularization: Intuition

- For images with significant chrominance geometry, edge correlation between RGB channels expected to be low
- Minimize edge correlation between channels in desired HR image:

$$(\mathbf{S}_r\mathbf{x})^T(\mathbf{S}_g\mathbf{x}) < \epsilon_{rg}, (\mathbf{S}_g\mathbf{x})^T(\mathbf{S}_b\mathbf{x}) < \epsilon_{gb}, (\mathbf{S}_b\mathbf{x})^T(\mathbf{S}_r\mathbf{x}) < \epsilon_{br}.$$

Incorporate into cost function as a regularization term:

$$\rho_C(\mathbf{x}) = (\mathbf{S}_r \mathbf{x})^T (\mathbf{S}_g \mathbf{x}) + (\mathbf{S}_g \mathbf{x})^T (\mathbf{S}_b \mathbf{x}) + (\mathbf{S}_b \mathbf{x})^T (\mathbf{S}_r \mathbf{x})$$

11/10/2011 CIC 2011 Information Processing and Algorithms La

Chrominance regularization: Intuition

- For images with significant chrominance geometry, edge correlation between RGB channels expected to be low
- Minimize edge correlation between channels in desired HR image:

$$(\mathbf{S}_r\mathbf{x})^T(\mathbf{S}_g\mathbf{x}) < \epsilon_{rg}, (\mathbf{S}_g\mathbf{x})^T(\mathbf{S}_b\mathbf{x}) < \epsilon_{gb}, (\mathbf{S}_b\mathbf{x})^T(\mathbf{S}_r\mathbf{x}) < \epsilon_{br}.$$

• Incorporate into cost function as a regularization term:

$$\rho_C(\mathbf{x}) = (\mathbf{S}_r \mathbf{x})^T (\mathbf{S}_g \mathbf{x}) + (\mathbf{S}_g \mathbf{x})^T (\mathbf{S}_b \mathbf{x}) + (\mathbf{S}_b \mathbf{x})^T (\mathbf{S}_r \mathbf{x}).$$

$$C = \sum_{k=1}^{K} \|\mathbf{y}_k - \mathbf{DBT}_k \mathbf{x}\|_p + \alpha_L \rho_L(\mathbf{x}) + \alpha_C \rho_C(\mathbf{x}).$$

$$C = \sum_{k=1}^{K} \|\mathbf{y}_k - \mathbf{DBT}_k \mathbf{x}\|_p$$

$$C = \sum_{k=1}^{K} \|\mathbf{y}_k - \mathbf{DBT}_k \mathbf{x}\|_p + \alpha_L \rho_L(\mathbf{x})$$

$$C = \sum_{k=1}^{K} \|\mathbf{y}_k - \mathbf{DBT}_k \mathbf{x}\|_p + \alpha_L \rho_L(\mathbf{x}) + \alpha_C \rho_C(\mathbf{x}).$$

Contribution: Image-adaptive color super-resolution

$$\begin{split} & \underset{\mathbf{x}, \{\mathbf{T}_k\}, \mathbf{B}, \mathbf{S}_r, \mathbf{S}_g, \mathbf{S}_b}{\text{minimize}} & \sum_{k=1}^K \|\mathbf{y}_k - \mathbf{D}\mathbf{B}\mathbf{T}_k \mathbf{x}\|_p + \alpha_L \rho_L(\mathbf{x}) + \alpha_C \rho_C(\mathbf{x}) \\ & \mathbf{0} \leq \mathbf{D}\mathbf{B}\mathbf{T}_k \mathbf{x} \leq \mathbf{1}, \quad 1 \leq k \leq K \\ & \mathbf{T}_k \cdot \mathbf{1} = \mathbf{1}, \quad 1 \leq k \leq K \\ & \mathbf{B} \cdot \mathbf{1} = \mathbf{1} \\ & \mathbf{t}_{k,i}^T \mathbf{m}_{k,i} = 0, \quad 1 \leq i \leq 3n, \quad 1 \leq k \leq K \\ & \mathbf{b}_i^T \mathbf{e}_i = 0, \quad 1 \leq i \leq 3n \\ & \mathbf{S}_r.\mathbf{1} = \mathbf{0} \\ & \mathbf{S}_g.\mathbf{1} = \mathbf{0} \\ & \mathbf{S}_b.\mathbf{1} = \mathbf{0} \\ & (\mathbf{s}_{r,i})^T \mathbf{f}_{r,i} = 1, \quad 1 \leq i \leq 3n \\ & (\mathbf{s}_{g,i})^T \mathbf{f}_{g,i} = 1, \quad 1 \leq i \leq 3n \\ & (\mathbf{s}_{b,i})^T \mathbf{f}_{b,i} = 1, \quad 1 \leq i \leq 3n \end{split}$$

Constraints on gradient operators

 Gradient operator → high-pass filter ⇒ elements in each row must sum to zero:

$$\mathbf{S}_r \cdot \mathbf{1} = \mathbf{0}, \quad \mathbf{S}_g \cdot \mathbf{1} = \mathbf{0}, \quad \mathbf{S}_b \cdot \mathbf{1} = \mathbf{0}.$$

• Membership constraints on S_r, S_g, S_b to prevent convergence to 0:

$$(\mathbf{s}_{r,i})^T \mathbf{f}_{r,i} = 1, (\mathbf{s}_{g,i})^T \mathbf{f}_{g,i} = 1, (\mathbf{s}_{b,i})^T \mathbf{f}_{b,i} = 1, 1 \le i \le 3n.$$

- ullet $\mathbf{f}_{r,i},\mathbf{f}_{g,i},\mathbf{f}_{b,i}$ generated from initial gradient operator
- Element in S takes positive, negative or zero value \rightarrow corresponding entry in f equals 1, -1 or 0 respectively.

Constraints on gradient operators

• Gradient operator \rightarrow high-pass filter \Rightarrow elements in each row must sum to zero:

$$\mathbf{S}_r \cdot \mathbf{1} = \mathbf{0}, \quad \mathbf{S}_q \cdot \mathbf{1} = \mathbf{0}, \quad \mathbf{S}_b \cdot \mathbf{1} = \mathbf{0}.$$

• Membership constraints on S_r, S_q, S_b to prevent convergence to 0:

$$(\mathbf{s}_{r,i})^T \mathbf{f}_{r,i} = 1, (\mathbf{s}_{g,i})^T \mathbf{f}_{g,i} = 1, (\mathbf{s}_{b,i})^T \mathbf{f}_{b,i} = 1, 1 \le i \le 3n.$$

- ullet $\mathbf{f}_{r,i},\mathbf{f}_{g,i},\mathbf{f}_{b,i}$ generated from initial gradient operator
- Element in S takes positive, negative or zero value \rightarrow corresponding entry in f equals 1, -1 or 0 respectively.

Constraints on gradient operators

• Gradient operator \rightarrow high-pass filter \Rightarrow elements in each row must sum to zero:

$$\mathbf{S}_r \cdot \mathbf{1} = \mathbf{0}, \quad \mathbf{S}_q \cdot \mathbf{1} = \mathbf{0}, \quad \mathbf{S}_b \cdot \mathbf{1} = \mathbf{0}.$$

• Membership constraints on S_r, S_q, S_b to prevent convergence to 0:

$$(\mathbf{s}_{r,i})^T \mathbf{f}_{r,i} = 1, (\mathbf{s}_{g,i})^T \mathbf{f}_{g,i} = 1, (\mathbf{s}_{b,i})^T \mathbf{f}_{b,i} = 1, 1 \le i \le 3n.$$

- ullet $\mathbf{f}_{r,i},\mathbf{f}_{g,i},\mathbf{f}_{b,i}$ generated from initial gradient operator
- Element in ${\bf S}$ takes positive, negative or zero value \to corresponding entry in ${\bf f}$ equals 1, -1 or 0 respectively.

How to choose α_C and α_L ?

Estimate degree of image chrominance geometry

$$\beta = \frac{1}{2} \begin{pmatrix} \frac{\|\mathbf{H}_{1}\mathbf{x}_{\mathsf{Cb}}\| + \|\mathbf{H}_{1}\mathbf{x}_{\mathsf{Cr}}\|}{\|\mathbf{H}_{1}\mathbf{x}_{\mathsf{r}}\|} + \frac{\|\mathbf{H}_{2}\mathbf{x}_{\mathsf{Cb}}\| + \|\mathbf{H}_{2}\mathbf{x}_{\mathsf{Cr}}\|}{\|\mathbf{H}_{2}\mathbf{x}_{\mathsf{r}}\|} \end{pmatrix}.$$

$$\begin{pmatrix} 3 & 10 & 3 \\ 0 & 0 & 0 \\ -3 & -10 & -3 \end{pmatrix}, \ \mathbf{h}_{2} = \begin{pmatrix} 3 & 0 & -3 \\ 10 & 0 & -10 \\ 3 & 0 & -3 \end{pmatrix}.$$

- $\beta \downarrow \Rightarrow \alpha_C \downarrow$, $\alpha_L \uparrow$
- $\beta \uparrow \Rightarrow \alpha_C \uparrow$, $\alpha_L \downarrow$
- α_C and α_L assigned complementary weights: $\alpha_C = \alpha_{\text{max}} \alpha_L$.

11/10/2011 CIC 2011 Information Processing and Algorithms Laboratory

How to choose α_C and α_L ?

• Estimate degree of image chrominance geometry

$$\beta = \frac{1}{2} \left(\frac{\|\mathbf{H}_1 \mathbf{x}_{\mathsf{Cb}}\| + \|\mathbf{H}_1 \mathbf{x}_{\mathsf{Cr}}\|}{\|\mathbf{H}_1 \mathbf{x}_{\mathsf{Y}}\|} + \frac{\|\mathbf{H}_2 \mathbf{x}_{\mathsf{Cb}}\| + \|\mathbf{H}_2 \mathbf{x}_{\mathsf{Cr}}\|}{\|\mathbf{H}_2 \mathbf{x}_{\mathsf{Y}}\|} \right).$$

$$\mathbf{h}_1 = \begin{pmatrix} 3 & 10 & 3 \\ 0 & 0 & 0 \\ -3 & -10 & -3 \end{pmatrix}, \ \mathbf{h}_2 = \begin{pmatrix} 3 & 0 & -3 \\ 10 & 0 & -10 \\ 3 & 0 & -3 \end{pmatrix}.$$

- $\beta \downarrow \Rightarrow \alpha_C \downarrow$, $\alpha_L \uparrow$
- $\beta \uparrow \Rightarrow \alpha_C \uparrow$, $\alpha_L \downarrow$
- α_C and α_L assigned complementary weights: $\alpha_C = \alpha_{\text{max}} \alpha_L$.

11/10/2011

How to choose α_C and α_L ?

Estimate degree of image chrominance geometry

$$\beta = \frac{1}{2} \left(\frac{\|\mathbf{H}_1 \mathbf{x}_{\mathsf{Cb}}\| + \|\mathbf{H}_1 \mathbf{x}_{\mathsf{Cr}}\|}{\|\mathbf{H}_1 \mathbf{x}_{\mathsf{r}}\|} + \frac{\|\mathbf{H}_2 \mathbf{x}_{\mathsf{Cb}}\| + \|\mathbf{H}_2 \mathbf{x}_{\mathsf{Cr}}\|}{\|\mathbf{H}_2 \mathbf{x}_{\mathsf{r}}\|} \right).$$

$$\mathbf{h}_1 = \begin{pmatrix} 3 & 10 & 3 \\ 0 & 0 & 0 \\ -3 & -10 & -3 \end{pmatrix}, \ \mathbf{h}_2 = \begin{pmatrix} 3 & 0 & -3 \\ 10 & 0 & -10 \\ 3 & 0 & -3 \end{pmatrix}.$$

- $\beta \downarrow \Rightarrow \alpha_C \downarrow$, $\alpha_L \uparrow$
- $\beta \uparrow \Rightarrow \alpha_C \uparrow$, $\alpha_L \downarrow$
- α_C and α_L assigned complementary weights: $\alpha_C = \alpha_{\text{max}} \alpha_L$.

11/10/2011

How to choose α_C and α_L ?

• Estimate degree of image chrominance geometry

$$\beta = \frac{1}{2} \left(\frac{\|\mathbf{H}_1 \mathbf{x}_{\mathsf{Cb}}\| + \|\mathbf{H}_1 \mathbf{x}_{\mathsf{Cr}}\|}{\|\mathbf{H}_1 \mathbf{x}_{\mathsf{r}}\|} + \frac{\|\mathbf{H}_2 \mathbf{x}_{\mathsf{Cb}}\| + \|\mathbf{H}_2 \mathbf{x}_{\mathsf{Cr}}\|}{\|\mathbf{H}_2 \mathbf{x}_{\mathsf{r}}\|} \right).$$

$$\mathbf{h}_1 = \begin{pmatrix} 3 & 10 & 3 \\ 0 & 0 & 0 \\ -3 & -10 & -3 \end{pmatrix}, \ \mathbf{h}_2 = \begin{pmatrix} 3 & 0 & -3 \\ 10 & 0 & -10 \\ 3 & 0 & -3 \end{pmatrix}.$$

- $\beta \downarrow \Rightarrow \alpha_C \downarrow$, $\alpha_L \uparrow$
- $\beta \uparrow \Rightarrow \alpha_C \uparrow$, $\alpha_L \downarrow$
- α_C and α_L assigned complementary weights: $\alpha_C = \alpha_{\max} \alpha_L$.

11/10/2011

Choice of β and α_C

Figure: Mapping from β to α_c .

Figure: Threshold: $\beta_0 = 0.75$.

11/10/2011 CIC 2011

Results: I

11/10/2011 CIC 2011 Information Processing and Algorithms Laboratory 17

walle).

Results: II

11/10/2011 CIC 2011 Information Processing and Algorithms Laboratory 18

Conclusions

- Color super-resolution framework that simultaneously exploits spatial and amplitude information
 - Novel chrominance regularization
 - Image-adaptive selection of optimization parameters
- Constrained convex optimization framework
 - Tractable algorithms.

11/10/2011 CIC 2011

Thank you

Questions?

11/10/2011 CIC 2011

Backup Slides

11/10/2011 CIC 2011 Information Processing and Algorithms Laboratory 21

High-pass filter constraints for gradient operators

$$H(\omega_1, \omega_2) = \sum_{(n_1, n_2) \in \mathcal{R}} h[n_1, n_2] e^{-j\omega_1 n_1} e^{-j\omega_2 n_2}.$$

CIC 2011

Quantitative comparison of performance

$$J_i = 10 \left[\log \left(\frac{\sum_{k=1}^K \|\mathbf{y} - \mathbf{DBT}_k \mathbf{x}_i\|_2}{\sum_{k=1}^K \|\mathbf{y} - \mathbf{DBT}_k \mathbf{x}\|_2} \right) + (1 - \beta) \log \frac{\rho_L(\mathbf{x}_i)}{\rho_L(\mathbf{x})} + \beta \log \frac{\rho_C(\mathbf{x}_i)}{\rho_C(\mathbf{x})} \right]$$

- Comparison with three competitive methods:
 - **1** $i = 1 : \alpha_L \text{ with } l_1 \text{-norm}^{11}$
 - $i = 2 : \alpha_L \text{ with } l_2\text{-norm}^{12}$
 - (a) i = 3: luminance and chrominance separately i = 3: luminance separately i = 3:
- $J>0\Rightarrow$ dB gain using proposed approach; $J<0\Rightarrow$ competitive method better.

		1.599	
(b)	7.900	6.562	26.856
		-1.153	17.711
	0.404	-0.979	12.196
		4.674	
			20.804
(h)	7.857	6.208	25.863
(i)	12.110	10.899	27.805

Farsin et al. IEEE Trans. Image Process. 2006.

Menon et al., IEEE Trans. Image Process., 2009

¹³ Vandewalle et al., SPIE 2007

Quantitative comparison of performance

$$J_i = 10 \left[\log \left(\frac{\sum_{k=1}^K \|\mathbf{y} - \mathbf{DBT}_k \mathbf{x}_i\|_2}{\sum_{k=1}^K \|\mathbf{y} - \mathbf{DBT}_k \mathbf{x}\|_2} \right) + (1 - \beta) \log \frac{\rho_L(\mathbf{x}_i)}{\rho_L(\mathbf{x})} + \beta \log \frac{\rho_C(\mathbf{x}_i)}{\rho_C(\mathbf{x})} \right]$$

Comparison with three competitive methods:

1 $i = 1 : \alpha_L$ with l_1 -norm $i = 1 : \alpha_L$ with l_2 -norm $i = 2 : \alpha_L$ with i = 1

i=2: α_L with i_2 -norm i=3: luminance and chrominance separately¹³

• $J>0\Rightarrow$ dB gain using proposed approach; $J<0\Rightarrow$ competitive method better.

		1.599	
(b)	7.900	6.562	26.856
		-1.153	17.711
	0.404	-0.979	12.196
		4.674	
			20.804
(h)	7.857	6.208	25.863
(i)	12.110	10.899	27.805

¹¹Farsiu et al., IEEE Trans. Image Process., 2006

¹² Menon et al., IEEE Trans. Image Process., 2009

¹³ Vandewalle et al., SPIE 2007

Quantitative comparison of performance

$$J_i = 10 \left[\log \left(\frac{\sum_{k=1}^{K} \|\mathbf{y} - \mathbf{DBT}_k \mathbf{x}_i\|_2}{\sum_{k=1}^{K} \|\mathbf{y} - \mathbf{DBT}_k \mathbf{x}\|_2} \right) + (1 - \beta) \log \frac{\rho_L(\mathbf{x}_i)}{\rho_L(\mathbf{x})} + \beta \log \frac{\rho_C(\mathbf{x}_i)}{\rho_C(\mathbf{x})} \right]$$

Comparison with three competitive methods:

1 $i = 1 : \alpha_L$ with l_1 -norm $i = 1 : \alpha_L$ with l_2 -norm $i = 2 : \alpha_L$ with i = 1

i=3: luminance and chrominance separately¹³

• $J>0\Rightarrow$ dB gain using proposed approach; $J<0\Rightarrow$ competitive method better.

Image	J_1	J_2	J_3
(a)	0.182	1.599	16.469
(b)	7.900	6.562	26.856
(c)	-0.493	-1.153	17.711
(d)	0.404	-0.979	12.196
(e)	7.902	4.674	21.647
(f)	7.222	5.260	20.804
(g)	9.806	8.388	21.588
(h)	7.857	6.208	25.863
(i)	12.110	10.899	27.805

¹¹ Farsiu et al., IEEE Trans. Image Process., 2006

¹² Menon et al., IEEE Trans. Image Process., 2009

¹³ Vandewalle et al., SPIE 2007