Automatic Target Recognition Using Discriminative Graphical Models

Umamahesh Srinivas[†] Vishal Monga[†] Raghu G. Raj[‡]

[†]Pennsylvania State University University Park, USA [‡]U.S. Naval Research Laboratory Washington DC, USA

IEEE International Conference on Image Processing

September 12, 2011

Outline

- Introduction
- Background and Review
 - Automatic target recognition (ATR)
 - Graphical models
- Main Contribution
 - Learning discriminative graphical models for ATR
- Experiments and Results
- Conclusions

Introduction

• View image classification as a hypothesis testing problem:

$$H_0 : \mathbf{x} \sim f(\mathbf{x}|H_0)$$
$$H_1 : \mathbf{x} \sim f(\mathbf{x}|H_1)$$

Likelihood ratio test (LRT):

Figure: Fingerprint verification (biometrics).

 Success of Bayesian classifiers dictated by accuracy of estimation of conditional densities

09/12/2011

Introduction

• View image classification as a hypothesis testing problem:

$$H_0 : \mathbf{x} \sim f(\mathbf{x}|H_0)$$
$$H_1 : \mathbf{x} \sim f(\mathbf{x}|H_1)$$

Likelihood ratio test (LRT):

Figure: Fingerprint verification (biometrics).

 Success of Bayesian classifiers dictated by accuracy of estimation of conditional densities

09/12/2011

Review I: Automatic Target Recognition

- Exploit imagery from diverse sensed sources for automatic target identification
- Sources: Synthetic aperture radar (SAR), inverse SAR, infra-red (FLIR), hyperspectral, etc.

Figure: Schematic of ATR framework. The classification and recognition stages assign an input image/ feature to one of many target classes.

Two stages in any classification framework:

- Feature extraction from sensed imagery
- Obecision engine which performs class assignment

Algorithmic developments:

- Feature sets
 - Template-based
 - Transform domain-based (e.g. wavelets)
 - Computer vision-based
 - Estimation-theoretic
- Decision engines
 - Neural networks
 - Support vector machines (SVM)
 - Boosting
- Classifier fusion: heuristic¹, meta-classification^{2,3}
 - Outputs of individual classifiers \rightarrow high-level features

ICIP 2011

- ¹Rizvi et al., Applied Imagery Pattern Recognition Workshop, 2003
- ²Sun et al., IEEE Trans. Aerosp. Electron. Syst., 2007
- ⁵Srinivas et al., IEEE Radar Conference, 2011

Two stages in any classification framework:

- Feature extraction from sensed imagery
- Obecision engine which performs class assignment

Algorithmic developments:

- Feature sets
 - Template-based
 - Transform domain-based (e.g. wavelets)
 - Computer vision-based
 - Estimation-theoretic
- Decision engines
 - Neural networks
 - Support vector machines (SVM)
 - Boosting
- Classifier fusion: heuristic¹, meta-classification^{2,3}
 - \bullet Outputs of individual classifiers \to high-level features

ICIP 2011

- ¹Rizvi et al., Applied Imagery Pattern Recognition Workshop, 2003
- ²Sun et al., IEEE Trans. Aerosp. Electron. Syst., 2007
- ³Srinivas et al., IEEE Radar Conference, 2011

Two stages in any classification framework:

- Feature extraction from sensed imagery
- Obecision engine which performs class assignment

Algorithmic developments:

- Feature sets
 - Template-based
 - Transform domain-based (e.g. wavelets)
 - Computer vision-based
 - Estimation-theoretic
- Decision engines
 - Neural networks
 - Support vector machines (SVM)
 - Boosting
- Classifier fusion: heuristic¹, meta-classification^{2,3}
 - \bullet Outputs of individual classifiers \to high-level features

ICIP 2011

- ¹Rizvi et al., Applied Imagery Pattern Recognition Workshop, 2003
- ²Sun et al., IEEE Trans. Aerosp. Electron. Syst., 2007
- ³Srinivas et al., IEEE Radar Conference, 2011

Two stages in any classification framework:

- Feature extraction from sensed imagery
- Obecision engine which performs class assignment

Algorithmic developments:

- Feature sets
 - Template-based
 - Transform domain-based (e.g. wavelets)
 - Computer vision-based
 - Estimation-theoretic
- Decision engines
 - Neural networks
 - Support vector machines (SVM)
 - Boosting
- Classifier fusion: heuristic¹, meta-classification^{2,3}
 - Outputs of individual classifiers \rightarrow high-level features

ICIP 2011

¹Rizvi et al., Applied Imagery Pattern Recognition Workshop, 2003

²Sun et al., IEEE Trans. Aerosp. Electron. Syst., 2007

³Srinivas et al., IEEE Radar Conference, 2011

Research challenges

 $\bullet\,$ Limited availability of training $\rightarrow\,$ serious practical concern

- High-dimensional target image data/ equivalent features
- Variety of features and decision engines
 - No single optimal feature set-decision engine combination

Motivation for contribution:

- Presence of complementary yet correlated information
- Probabilistic graphical models: learn tractable models from high-D data under limited training.

Research challenges

 $\bullet\,$ Limited availability of training \rightarrow serious practical concern

- High-dimensional target image data/ equivalent features
- Variety of features and decision engines
 - No single optimal feature set-decision engine combination

Motivation for contribution:

- Presence of complementary yet correlated information
- Probabilistic graphical models: learn tractable models from high-D data under limited training.

Review II: Graphical models

- (Undirected) Graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ defined by a set of nodes $\mathcal{V} = \{1, \dots, n\}$, and a set of edges $\mathcal{E} \subset \binom{\mathcal{V}}{2}$.
- Graphical model: Random vector defined on a graph; nodes represent random variables, edges reveal conditional dependencies.
- Graph structure defines factorization of joint probability distribution

Figure: Tree - connected acyclic graph.

 $f(\mathbf{x}) = f(x_1)f(x_2|x_1)f(x_3|x_1)f(x_4|x_2)f(x_5|x_2)f(x_6|x_3)f(x_7|x_3).$

09/12/2011

Review II: Graphical models

- (Undirected) Graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ defined by a set of nodes $\mathcal{V} = \{1, \dots, n\}$, and a set of edges $\mathcal{E} \subset \binom{\mathcal{V}}{2}$.
- Graphical model: Random vector defined on a graph; nodes represent random variables, edges reveal conditional dependencies.
- Graph structure defines factorization of joint probability distribution

Figure: Tree - connected acyclic graph.

 $f(\mathbf{x}) = f(x_1)f(x_2|x_1)f(x_3|x_1)f(x_4|x_2)f(x_5|x_2)f(x_6|x_3)f(x_7|x_3).$

09/12/2011

Learning graphical models

• Generative learning⁴

• Learn a single graph to minimize approximation error:

$$\label{eq:given p} \text{Given } p, \text{ find } \hat{p} = \arg\min_{p_t \text{ is a tree}} D(p||p_t).$$

$$\left(D(p||p_t) := \int p(\mathbf{x}) \log\left(\frac{p(\mathbf{x})}{p_t(\mathbf{x})}\right) d\mathbf{x} \to \text{ KL-divergence.}\right)$$

- Equivalent max-weight spanning tree (MWST) problem
- Discriminative learning⁵
 - Simultaneously learn a pair of graphs to minimize classification error
- Inherent trade-off:
 - Tree graphs: easy to learn, limited modeling ability
 - Learning more complex graphical structures: NP-hard

⁴Chow et al., IEEE Trans. Inf. Theory, 1968

^DFriedman et al., Machine Learning, 1997

Learning graphical models

• Generative learning⁴

• Learn a single graph to minimize approximation error:

$$\label{eq:given p} \text{Given } p, \text{ find } \hat{p} = \arg\min_{p_t \text{ is a tree}} D(p||p_t).$$

$$\left(D(p||p_t) := \int p(\mathbf{x}) \log\left(\frac{p(\mathbf{x})}{p_t(\mathbf{x})}\right) d\mathbf{x} \to \text{ KL-divergence.}\right)$$

- Equivalent max-weight spanning tree (MWST) problem
- Discriminative learning⁵
 - Simultaneously learn a pair of graphs to minimize classification error
- Inherent trade-off:
 - Tree graphs: easy to learn, limited modeling ability
 - Learning more complex graphical structures: NP-hard

ICIP 2011

- ⁴Chow et al., IEEE Trans. Inf. Theory, 1968
- ⁵Friedman et al., Machine Learning, 1997

Learning graphical models

• Generative learning⁴

• Learn a single graph to minimize approximation error:

Given
$$p$$
, find $\hat{p} = \arg \min_{p_t \text{ is a tree}} D(p||p_t).$

$$\left(D(p||p_t) := \int p(\mathbf{x}) \log\left(\frac{p(\mathbf{x})}{p_t(\mathbf{x})}\right) d\mathbf{x} \to \text{ KL-divergence.}\right)$$

- Equivalent max-weight spanning tree (MWST) problem
- Discriminative learning⁵
 - Simultaneously learn a pair of graphs to minimize classification error
- Inherent trade-off:
 - Tree graphs: easy to learn, limited modeling ability
 - Learning more complex graphical structures: NP-hard

⁴Chow et al., IEEE Trans. Inf. Theory, 1968

⁵Friedman et al., Machine Learning, 1997

Discriminative learning of trees⁶

Tree-approximate J-divergence of \widehat{p}, \widehat{q} w.r.t. p, q:

$$\widehat{J}(\widehat{p},\widehat{q};p,q) := \int_{\Omega \subset \mathcal{X}^n} (p(\mathbf{x}) - q(\mathbf{x})) \log\left(\frac{\widehat{p}(\mathbf{x})}{\widehat{q}(\mathbf{x})}\right) d\mathbf{x}.$$

$$(\widehat{p}, \widehat{q}) = \arg \max_{\widehat{p} \in \mathcal{T}_{\widetilde{p}}, \widehat{q} \in \mathcal{T}_{\widetilde{q}}} \widehat{J}(\widehat{p}, \widehat{q}; \widetilde{p}, \widetilde{q}).$$

(\widetilde{p} and \widetilde{q} : empirical distributions from \mathcal{T}_p and \mathcal{T}_q respectively.)

Figure: Illustration of discriminative learning (courtesy Tan et al.)

⁶Tan et al., IEEE Trans. Signal Process., 2010

Discriminative vs. generative learning⁷

- Experiment: Handwritten digits classification (MNIST Database)
- Algorithms compared:
 - Chow-Liu (CL): generative learning
 - Tree Augmented Naive (TAN)
 - Discriminative Trees (DT)

Figure: Probability of error as a function of number of newly added edges.

ICIP 2011

⁷Tan et al., IEEE Trans. Signal Process., 2010

Learning Discriminative Graphical Models for ATR

Two-stage framework:

- Acquire multiple signal representations, which are conditionally correlated per class
- Mine dependencies between different features via boosting on discriminative graphs.

Stage 1: Feature extraction

- Projection to a lower-dimensional space $\mathcal{P} : \mathbb{R}^n \mapsto \mathbb{R}^m, m < n$
- M different projections⁸ $\mathcal{P}_i, i = 1, ..., M$, generate corresponding low-level features $\mathbf{y}_i \in \mathbb{R}^{m_i}$

ICIP 2011

⁸For notational simplicity, we let $m_1 = m_2 = \ldots = m$.

Stage 2: Learning discriminative graphs

Boosting on initially disjoint graphs to discover new edges (conditional correlations)

Learning discriminative graphs: An illustration⁹ Iteration 1:

Re-weighting of training samples (boosting) ightarrow learn another tree \ldots

ICIP 2011

9Shown for distribution p; graph for q learnt analogously.

09/12/2011

PENNSTATE PAL @

Learning discriminative graphs: An illustration⁹ Iteration 1:

Re-weighting of training samples (boosting) \rightarrow learn another tree . . .

9Shown for distribution p; graph for q learnt analogously.

09/12/2011

ICIP 2011

PENNSTATE PAL @

Learning discriminative graphs: An illustration Iteration 2:

Newly introduced edges crucial for capturing correlations amongst distinct signal representations.

PENN<u>STATE</u> PAL @

09/12/2011

Learning discriminative graphs: An illustration

Iteration 3:

Learning discriminative graphs: An illustration

Iteration 4:

Stopping criterion

How many edges to learn?

- Cross-validation
- **2** Using the *J*-divergence:

$$\widehat{J}(\widehat{p},\widehat{q};p,q) := \int_{\Omega \subset \mathcal{X}^n} (p(\mathbf{x}) - q(\mathbf{x})) \log\left(\frac{\widehat{p}(\mathbf{x})}{\widehat{q}(\mathbf{x})}\right) d\mathbf{x}.$$

Stopping criterion:

Stop after i boosting iterations if:

$$\frac{\widehat{J}^{(i+1)}(\widehat{p},\widehat{q};p,q)-\widehat{J}^{(i)}(\widehat{p},\widehat{q};p,q)}{\widehat{J}^{(i)}(\widehat{p},\widehat{q};p,q)}<\epsilon$$

What about signal representations?

- Blind discriminative learning: no prior information about images
- Projection to wavelet sub-bands^{10,11,12}
 - 2-D Reverse biorthogonal wavelets

Figure: LL sub-band, LH sub-band, HL sub-band.

ICIP 2011

10 Fukuda et al., IEEE Trans. Gesoscience and Remote Sensing, 1999

¹¹Simard et al., IEEE IGARSS, 1999

¹²N. Sandirasegaram, Tech. Memo. DRDC Ottawa, 2005

Experiment: Multi-class classification for ATR¹³

Five classes from benchmark MSTAR database:

- T-72 tanks
- BMP-2 infantry fighting vehicles
- BTR-70 armored personnel carriers
- ZIL131 trucks
- D7 tractors
 - Processed input image dimension 64×64
 - Training: 150 images per class; testing: 1913 images
 - Compare with single feature set + SVM.

 $^{^{13}\}mathrm{Extension}$ of binary classification in one-versus-all manner.

Experiment: Multi-class classification for ATR¹³

Five classes from benchmark MSTAR database:

- T-72 tanks
- BMP-2 infantry fighting vehicles
- BTR-70 armored personnel carriers
- ZIL131 trucks
- D7 tractors
 - \bullet Processed input image dimension 64×64
 - Training: 150 images per class; testing: 1913 images
 - Compare with single feature set + SVM.

 $^{^{13}\}mathrm{Extension}$ of binary classification in one-versus-all manner.

Experiment: Multi-class classification for ATR

Using wavelet basis representations:

Class	BMP-2	BTR-70	T-72	ZIL131	D7
BMP-2	0.85	0.04	0.04	0.03	0.04
BTR-70	0.05	0.87	0.03	0.02	0.03
T-72	0.04	0.07	0.86	0.01	0.02
ZIL131	0.01	0.05	0.06	0.85	0.03
D7	0.04	0.0	0.06	0.06	0.84

Table: Confusion matrix for LL wavelet sub-band feature + SVM.

Table: Confusion matrix for proposed approach using wavelet basis.

Class	BMP-2	BTR-70	T-72	ZIL131	D7
BMP-2	0.92	0.05	0.02	0.01	0.01
BTR-70	0.03	0.94	0.02	0.0	0.01
T-72	0.02	0.05	0.91	0.0	0.02
ZIL131	0.01	0.02	0.03	0.93	0.01
D7	0.01	0.0	0.04	0.04	0.91

Experiment: Performance as function of training size

- Practical concern for ATR: limited training resources
- Binary classification problem: T-72 and BMP-2 classes
- $\bullet\,$ Probability of misclassification $\to\,$ average of false-alarm and miss probabilities.
- Five approaches compared:
 - IndSVM: single feature set + SVM
 - ClassFusion: ranking-based classifier fusion¹⁴
 - AdaBoost: boosting-based approach¹⁵
 - CombSVM: concatenated feature vector + SVM
 - IGT: Proposed iterative graph thickening framework

¹⁴Rizvi et al., Applied Imagery Pattern Recognition Workshop, 2003

¹⁰Sun et al., IEEE Trans. Aerosp. Electron. Syst., 2007

Experiment: Performance as function of training size

- Practical concern for ATR: limited training resources
- Binary classification problem: T-72 and BMP-2 classes
- $\bullet\,$ Probability of misclassification $\to\,$ average of false-alarm and miss probabilities.
- Five approaches compared:
 - IndSVM: single feature set + SVM
 - ClassFusion: ranking-based classifier fusion¹⁴
 - AdaBoost: boosting-based approach¹⁵
 - CombSVM: concatenated feature vector + SVM
 - IGT: Proposed iterative graph thickening framework

¹⁴Rizvi et al., Applied Imagery Pattern Recognition Workshop, 2003

¹⁵Sun et al., IEEE Trans. Aerosp. Electron. Syst., 2007

Locality-based discriminative learning

(a) Optical image.

- Local image features more useful than global features
- Exploit scene-specific structure via image segmentation
- Wavelet LL sub-band from each region as feature.

09/12/2011

Results: Wavelet basis

Figure: Classification error vs. training sample size. Individual feature dimension m = 64 (except for the local IGT method).

PENNSTATE_____ Information Processing and Algorithms Laboratory 24

09/12/2011

Conclusions

- Developed a framework to mine conditional dependencies between distinct sets of features from SAR images
 - Distinct, complementary sets of low-level features combined to exploit correlated information (Extension to adaptively-learnt sparse feature sets in journal version)
 - Sub-optimal discriminative graphs learnt are particularly meritorious in the difficult regime of low training, high dimensionality.

Thank you Questions?

Backup Slides

J-divergence

Given distributions \boldsymbol{p} and $\boldsymbol{q}\text{,}$

$$J(p,q) := D(p||q) + D(q||p) = \int_{\Omega \subset \mathcal{X}^n} (p(\mathbf{x}) - q(\mathbf{x})) \log\left(\frac{p(\mathbf{x})}{q(\mathbf{x})}\right) d\mathbf{x}.$$

• Measures "separation" between tree-structured approximations \hat{p} and \hat{q} to arbitrary distributions p and q.

$$\frac{1}{4}\exp(-J) \le \operatorname{Pr}(\operatorname{err}) \le \frac{1}{2} \left(\frac{J}{4}\right)^{-\frac{1}{4}}$$

• Maximize J to minimize upper bound on Pr(err).

Edge weights:

$$\begin{split} \psi_{i,j}^p &:= & \mathbb{E}_{\widetilde{p}_{i,j}} \left[\log \frac{\widetilde{p}_{i,j}}{\widetilde{p}_i \widetilde{p}_j} \right] - \mathbb{E}_{\widetilde{q}_{i,j}} \left[\log \frac{\widetilde{p}_{i,j}}{\widetilde{p}_i \widetilde{p}_j} \right] \\ \psi_{i,j}^q &:= & \mathbb{E}_{\widetilde{q}_{i,j}} \left[\log \frac{\widetilde{q}_{i,j}}{\widetilde{q}_i \widetilde{q}_j} \right] - \mathbb{E}_{\widetilde{p}_{i,j}} \left[\log \frac{\widetilde{q}_{i,j}}{\widetilde{q}_i \widetilde{q}_j} \right]. \end{split}$$

Algorithm 1 Discriminative trees (DT)

Given: Training sets \mathcal{T}_p and \mathcal{T}_q .

- 1: Estimate pairwise statistics $\tilde{p}_{i,j}(x_i, x_j)$, $\tilde{q}_{i,j}(x_i, x_j)$ for all edges (i, j).
- 2: Compute edge weights $\psi_{i,j}^p$ and $\psi_{i,j}^q$ for all edges (i, j).
- 3: Find $\mathcal{E}_{\widehat{p}} = \mathsf{MWST}(\psi_{i,j}^p)$ and $\mathcal{E}_{\widehat{q}} = \mathsf{MWST}(\psi_{i,j}^q)$.
- 4: Get \hat{p} by projection of \tilde{p} onto $\mathcal{E}_{\hat{p}}$; likewise \hat{q} .
- 5: LRT using \widehat{p} and \widehat{q} .

Boosting

Algorithm 2 AdaBoost learning algorithm

1: Input data (x_i, y_i) , i = 1, 2, ..., N, where $x_i \in S$, $y_i \in \{-1, +1\}$ 2: Initialize $D_1(i) = \frac{1}{N}, i = 1, 2, ..., N$ 3: For t = 1, 2, ..., T: • Train weak learner using distribution D_t • Determine weak hypothesis $h_t : S \mapsto \mathbb{R}$ with error ϵ_t • Choose $\beta_t = \frac{1}{2} \ln \left(\frac{1-\epsilon_t}{\epsilon_t}\right)$ • $D_{t+1}(i) = \frac{1}{Z_t} \{D_t(i) \exp(-\beta_t y_i h_t(x_i))\}$, where Z_t is a normalization factor 4: Output soft decision $H(x) = \text{sign} \left[\sum_{t=1}^T \beta_t h_t(x)\right]$.

- Iteratively improves performance of weak learners
- Distribution of weights over the training set
- In each iteration, weak learner h_t minimizes weighted training error
- Weights on incorrectly classified samples increased \rightarrow slow learners penalized for harder examples.

09/12/2011

Learning thicker graphical models

• Final boosted classifier:

$$H_{T}(\mathbf{x}) = \operatorname{sgn}\left[\sum_{t=1}^{T} \alpha_{t} \log\left(\frac{\widehat{p}_{t}(\mathbf{x})}{\widehat{q}_{t}(\mathbf{x})}\right)\right] = \operatorname{sgn}\left[\log\prod_{t=1}^{T}\left(\frac{\widehat{p}_{t}(\mathbf{x})}{\widehat{q}_{t}(\mathbf{x})}\right)^{\alpha_{t}}\right]$$
$$= \operatorname{sgn}\left[\log\left(\frac{\prod_{t=1}^{T}(\widehat{p}_{t}(\mathbf{x}))^{\alpha_{t}}}{\prod_{t=1}^{T}(\widehat{q}_{t}(\mathbf{x}))^{\alpha_{t}}}\right)\right] = \operatorname{sgn}\left[\log\left(\frac{\widehat{p}(\mathbf{x})}{\widehat{q}(\mathbf{x})}\right)\right]$$

Define:

$$Z_p(\boldsymbol{\alpha}) = Z_p(\alpha_1, \dots, \alpha_T) = \sum_{\mathbf{x}} \hat{p}(\mathbf{x}); Z_q(\boldsymbol{\alpha}) = \sum_{\mathbf{x}} \hat{q}(\mathbf{x})$$

• Normalized distributions for inference: $\frac{\hat{p}(\mathbf{x})}{Z_p(\boldsymbol{\alpha})}, \frac{\hat{q}(\mathbf{x})}{Z_q(\boldsymbol{\alpha})}$

 \rightarrow Thicker graphical models learnt.

09/12/2011

ATR using sparse signal representations

Algorithm 3 Sparse feature extraction

Given: Matrix $\mathbf{X} \in \mathbb{R}^{n imes N}$ of training vectors.

- 1: Dictionary learning: Adaptively learn dictionary $\mathbf{A} \in \mathbb{R}^{n \times mM}$ via K-SVD.
- 2: Sub-dictionaries: Divide A into M distinct sub-dictionaries A_i , i = 1, ..., M, where A_1 corresponds to the first m basis vectors of A, and so on.
- 3: Feature: Solve M separate ℓ_1 -recovery problems to obtain $\mathbf{y}_i \in \mathbb{R}^m, i = 1, \dots, M$ corresponding to sub-dictionaries \mathbf{A}_i .

Here, $\mathcal{P}_i \equiv \mathbf{A}_i, i = 1, 2, 3$

09/12/2011

ATR: Sparse signal representations

Figure: Classification error vs. training sample size. Individual feature dimension m = 64.

09/12/2011

ICIP 2011

IPAL (*a*) ♥
Information Processing and Algorithms Laboratory 33

PENNSTATE

Reduced feature dimensionality: wavelet features

Figure: Classification error vs. training sample size. (a) Individual feature dimension m = 64 (except for the local IGT method). (b) Individual feature dimension m = 16.

Reduced feature dimensionality: sparse signal representations

Figure: Classification error vs. training sample size. (a) Individual feature dimension m = 64 (except for the local IGT method). (b) Individual feature dimension m = 16.

Multi-class classification

• K classes $\Rightarrow K$ separate binary classification problems

Decision rule:

$$i^* = \arg \max_{i \in \{1, \dots, K\}} \log \left(\frac{\hat{f}_{C_i}(\mathbf{y})}{\hat{f}_{\tilde{C}_i}(\mathbf{y})} \right),$$

where

- C_i : class i; \tilde{C}_i : complement of class i
- \hat{f}_{C_i} : final distribution learnt for C_i
- $\hat{f}_{\tilde{C}_i}$: final distribution learnt for \tilde{C}_i
- y: test feature

