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Introduction
View image classification as a hypothesis testing problem:

H0 : x ∼ f(x|H0)

H1 : x ∼ f(x|H1).

Likelihood ratio test (LRT):

L(x) :=
f(x|H1)

f(x|H0)

H1

T
H0

τ.

Figure: Fingerprint verification (biometrics).

Success of Bayesian classifiers dictated by accuracy of estimation of
conditional densities
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Review I: Automatic Target Recognition
Exploit imagery from diverse sensed sources for automatic target
identification

Sources: Synthetic aperture radar (SAR), inverse SAR, infra-red
(FLIR), hyperspectral, etc.

Figure: Schematic of ATR framework. The classification and recognition stages
assign an input image/ feature to one of many target classes.
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Target classification
Two stages in any classification framework:

1 Feature extraction from sensed imagery
2 Decision engine which performs class assignment

Algorithmic developments:

Feature sets
Template-based
Transform domain-based (e.g. wavelets)
Computer vision-based
Estimation-theoretic

Decision engines
Neural networks
Support vector machines (SVM)
Boosting

Classifier fusion: heuristic1, meta-classification2,3

Outputs of individual classifiers → high-level features
1

Rizvi et al., Applied Imagery Pattern Recognition Workshop, 2003
2

Sun et al., IEEE Trans. Aerosp. Electron. Syst., 2007
3

Srinivas et al., IEEE Radar Conference, 2011
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Research challenges

Limited availability of training → serious practical concern

High-dimensional target image data/ equivalent features

Variety of features and decision engines

No single optimal feature set-decision engine combination

Motivation for contribution:

Presence of complementary yet correlated information

Probabilistic graphical models: learn tractable models from high-D
data under limited training.
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Review II: Graphical models

(Undirected) Graph G = (V, E) defined by a set of nodes
V = {1, . . . , n}, and a set of edges E ⊂

(V
2

)
.

Graphical model: Random vector defined on a graph; nodes
represent random variables, edges reveal conditional dependencies.

Graph structure defines factorization of joint probability distribution

Figure: Tree - connected acyclic graph.

f(x) = f(x1)f(x2|x1)f(x3|x1)f(x4|x2)f(x5|x2)f(x6|x3)f(x7|x3).
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Learning graphical models

Generative learning4

Learn a single graph to minimize approximation error:

Given p, find p̂ = arg min
pt is a tree

D(p||pt).

(
D(p||pt) :=

∫
p(x) log

(
p(x)

pt(x)

)
dx → KL-divergence.

)

Equivalent max-weight spanning tree (MWST) problem

Discriminative learning5

Simultaneously learn a pair of graphs to minimize classification error

Inherent trade-off:

Tree graphs: easy to learn, limited modeling ability

Learning more complex graphical structures: NP-hard

4
Chow et al., IEEE Trans. Inf. Theory, 1968

5
Friedman et al., Machine Learning, 1997
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Discriminative learning of trees6

Tree-approximate J-divergence of p̂, q̂ w.r.t. p, q:

Ĵ(p̂, q̂; p, q) :=

∫
Ω⊂Xn

(p(x)− q(x)) log
(
p̂(x)

q̂(x)

)
dx.

(p̂, q̂) = arg max
p̂∈Tp̃,q̂∈Tq̃

Ĵ(p̂, q̂; p̃, q̃).

(p̃ and q̃: empirical distributions from Tp and Tq respectively.)

Figure: Illustration of discriminative learning (courtesy Tan et al.)

6
Tan et al., IEEE Trans. Signal Process., 2010
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Discriminative vs. generative learning7

Experiment: Handwritten digits classification (MNIST Database)

Algorithms compared:
Chow-Liu (CL): generative learning
Tree Augmented Naive (TAN)
Discriminative Trees (DT)

Figure: Probability of error as a function of number of newly added edges.

7
Tan et al., IEEE Trans. Signal Process., 2010
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Learning Discriminative Graphical Models for ATR

Two-stage framework:

1 Acquire multiple signal representations, which are conditionally
correlated per class

2 Mine dependencies between different features via boosting on
discriminative graphs.

09/12/2011 ICIP 2011 11



Stage 1: Feature extraction

Projection to a lower-dimensional space P : Rn 7→ Rm,m < n

M different projections8 Pi, i = 1, . . . ,M , generate corresponding
low-level features yi ∈ Rmi

8
For notational simplicity, we let m1 = m2 = . . . = m.
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Stage 2: Learning discriminative graphs

Boosting on initially disjoint graphs to discover new edges (conditional
correlations)

09/12/2011 ICIP 2011 13



Learning discriminative graphs: An illustration9

Iteration 1:

Re-weighting of training samples (boosting) → learn another tree . . .
9

Shown for distribution p; graph for q learnt analogously.
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Learning discriminative graphs: An illustration
Iteration 2:

Newly introduced edges crucial for capturing correlations amongst
distinct signal representations.
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Learning discriminative graphs: An illustration

Iteration 3:

09/12/2011 ICIP 2011 16



Learning discriminative graphs: An illustration

Iteration 4:
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Stopping criterion

How many edges to learn?

1 Cross-validation

2 Using the J-divergence:

Ĵ(p̂, q̂; p, q) :=

∫
Ω⊂Xn

(p(x)− q(x)) log
(
p̂(x)

q̂(x)

)
dx.

Stopping criterion:
Stop after i boosting iterations if:

Ĵ (i+1)(p̂, q̂; p, q)− Ĵ (i)(p̂, q̂; p, q)

Ĵ (i)(p̂, q̂; p, q)
< ε

09/12/2011 ICIP 2011 18



What about signal representations?

Blind discriminative learning: no prior information about images

Projection to wavelet sub-bands10,11,12

2-D Reverse biorthogonal wavelets

Figure: LL sub-band, LH sub-band, HL sub-band.

10
Fukuda et al., IEEE Trans. Gesoscience and Remote Sensing, 1999

11
Simard et al., IEEE IGARSS, 1999

12
N. Sandirasegaram, Tech. Memo. DRDC Ottawa, 2005
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Experiment: Multi-class classification for ATR13

Five classes from benchmark MSTAR database:

1 T-72 tanks

2 BMP-2 infantry fighting vehicles

3 BTR-70 armored personnel carriers

4 ZIL131 trucks

5 D7 tractors

Processed input image dimension - 64× 64

Training: 150 images per class; testing: 1913 images

Compare with single feature set + SVM.

13
Extension of binary classification in one-versus-all manner.
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Experiment: Multi-class classification for ATR

Using wavelet basis representations:

Table: Confusion matrix for LL wavelet sub-band feature + SVM.

Class BMP-2 BTR-70 T-72 ZIL131 D7
BMP-2 0.85 0.04 0.04 0.03 0.04
BTR-70 0.05 0.87 0.03 0.02 0.03

T-72 0.04 0.07 0.86 0.01 0.02
ZIL131 0.01 0.05 0.06 0.85 0.03

D7 0.04 0.0 0.06 0.06 0.84

Table: Confusion matrix for proposed approach using wavelet basis.

Class BMP-2 BTR-70 T-72 ZIL131 D7
BMP-2 0.92 0.05 0.02 0.01 0.01
BTR-70 0.03 0.94 0.02 0.0 0.01

T-72 0.02 0.05 0.91 0.0 0.02
ZIL131 0.01 0.02 0.03 0.93 0.01

D7 0.01 0.0 0.04 0.04 0.91
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Experiment: Performance as function of training size

Practical concern for ATR: limited training resources

Binary classification problem: T-72 and BMP-2 classes

Probability of misclassification → average of false-alarm and miss
probabilities.

Five approaches compared:
1 IndSVM: single feature set + SVM

2 ClassFusion: ranking-based classifier fusion14

3 AdaBoost: boosting-based approach15

4 CombSVM: concatenated feature vector + SVM

5 IGT: Proposed iterative graph thickening framework

14
Rizvi et al., Applied Imagery Pattern Recognition Workshop, 2003

15
Sun et al., IEEE Trans. Aerosp. Electron. Syst., 2007
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Locality-based discriminative learning

(a) Optical image. (b) SAR image.

Local image features more useful than global features

Exploit scene-specific structure via image segmentation

Wavelet LL sub-band from each region as feature.
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Results: Wavelet basis

Figure: Classification error vs. training sample size. Individual feature
dimension m = 64 (except for the local IGT method).

09/12/2011 ICIP 2011 24



Conclusions

Developed a framework to mine conditional dependencies between
distinct sets of features from SAR images

Distinct, complementary sets of low-level features combined to
exploit correlated information
(Extension to adaptively-learnt sparse feature sets in journal version)

Sub-optimal discriminative graphs learnt are particularly meritorious
in the difficult regime of low training, high dimensionality.

09/12/2011 ICIP 2011 25



Thank you

Questions?

09/12/2011 ICIP 2011 26



Backup Slides
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J-divergence

Given distributions p and q,

J(p, q) := D(p||q) +D(q||p) =
∫

Ω⊂Xn
(p(x)− q(x)) log

(
p(x)

q(x)

)
dx.

Measures “separation” between tree-structured approximations p̂
and q̂ to arbitrary distributions p and q.

1

4
exp(−J) ≤ Pr(err) ≤ 1

2

(
J

4

)− 1
4

.

Maximize J to minimize upper bound on Pr(err).
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Edge weights:

ψpi,j := Ep̃i,j
[
log

p̃i,j
p̃ip̃j

]
− Eq̃i,j

[
log

p̃i,j
p̃ip̃j

]
ψqi,j := Eq̃i,j

[
log

q̃i,j
q̃iq̃j

]
− Ep̃i,j

[
log

q̃i,j
q̃iq̃j

]
.

Algorithm 1 Discriminative trees (DT)

Given: Training sets Tp and Tq.

1: Estimate pairwise statistics p̃i,j(xi, xj), q̃i,j(xi, xj) for all edges (i, j).
2: Compute edge weights ψpi,j and ψqi,j for all edges (i, j).

3: Find Ep̂ = MWST(ψpi,j) and Eq̂ = MWST(ψqi,j).

4: Get p̂ by projection of p̃ onto Ep̂; likewise q̂.

5: LRT using p̂ and q̂.
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Boosting

Algorithm 2 AdaBoost learning algorithm

1: Input data (xi, yi), i = 1, 2, . . . , N , where xi ∈ S, yi ∈ {−1,+1}
2: Initialize D1(i) = 1

N , i = 1, 2, . . . , N
3: For t = 1, 2, . . . , T :

Train weak learner using distribution Dt

Determine weak hypothesis ht : S 7→ R with error εt

Choose βt = 1
2 ln

(
1−εt
εt

)
Dt+1(i) = 1

Zt
{Dt(i) exp(−βtyiht(xi))}, where Zt is a normalization factor

4: Output soft decision H(x) = sign
[∑T

t=1 βtht(x)
]

.

Iteratively improves performance of weak learners

Distribution of weights over the training set

In each iteration, weak learner ht minimizes weighted training error

Weights on incorrectly classified samples increased → slow learners
penalized for harder examples.
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Learning thicker graphical models

Final boosted classifier:

HT (x) = sgn

[
T∑
t=1

αt log

(
p̂t(x)

q̂t(x)

)]
= sgn

[
log

T∏
t=1

(
p̂t(x)

q̂t(x)

)αt]

= sgn

[
log

(∏T
t=1(p̂t(x))

αt∏T
t=1(q̂t(x))

αt

)]
= sgn

[
log

(
p̂(x)

q̂(x)

)]
Define:

Zp(α) = Zp(α1, . . . , αT ) =
∑
x

p̂(x);Zq(α) =
∑
x

q̂(x)

Normalized distributions for inference: p̂(x)
Zp(α) ,

q̂(x)
Zq(α)

→ Thicker graphical models learnt.
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ATR using sparse signal representations

Algorithm 3 Sparse feature extraction

Given: Matrix X ∈ Rn×N of training vectors.

1: Dictionary learning: Adaptively learn dictionary A ∈ Rn×mM via K-SVD.

2: Sub-dictionaries: Divide A into M distinct sub-dictionaries Ai, i = 1, . . . ,M , where A1

corresponds to the first m basis vectors of A, and so on.

3: Feature: Solve M separate `1-recovery problems to obtain yi ∈ Rm, i = 1, . . . ,M corre-
sponding to sub-dictionaries Ai.

Here, Pi ≡ Ai, i = 1, 2, 3
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ATR: Sparse signal representations

Figure: Classification error vs. training sample size. Individual feature
dimension m = 64.
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Reduced feature dimensionality: wavelet features

Figure: Classification error vs. training sample size. (a) Individual feature
dimension m = 64 (except for the local IGT method). (b) Individual feature
dimension m = 16.
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Reduced feature dimensionality: sparse signal
representations

Figure: Classification error vs. training sample size. (a) Individual feature
dimension m = 64 (except for the local IGT method). (b) Individual feature
dimension m = 16.
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Multi-class classification

K classes ⇒ K separate binary classification problems

Decision rule:

i∗ = arg max
i∈{1,...,K}

log

(
f̂Ci(y)

f̂C̃i(y)

)
,

where

Ci: class i; C̃i: complement of class i

f̂Ci : final distribution learnt for Ci

f̂C̃i : final distribution learnt for C̃i

y: test feature
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