Meta-classifiers for Exploiting Feature Dependencies in Automatic Target Recognition

Umamahesh Srinivas<sup>†</sup> Vishal Monga<sup>†</sup> Raghu G. Raj<sup>‡</sup>

<sup>†</sup>Pennsylvania State University University Park, USA <sup>‡</sup>U.S. Naval Research Laboratory Washington DC, USA





2011 IEEE Radar Conference

May 26, 2011

# Automatic Target Recognition (ATR)

- $\bullet\,$  Exploit imagery from diverse sensed sources for automatic target identification^1
- Variety of sensors: synthetic aperture radar (SAR), inverse SAR (ISAR), forward looking infra-red (FLIR), hyperspectral
- Diverse scenarios: air-to-ground, air-to-air, surface-to-surface



Figure: Sample targets and their SAR images. Courtesy: Gomes et al.



<sup>&</sup>lt;sup>1</sup>Bhanu et al., IEEE AES Systems Magazine, 1993

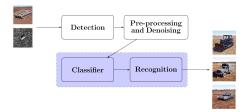


Figure: Schematic of ATR framework. The classification and recognition stages assign an input image/ feature to one of many target classes.



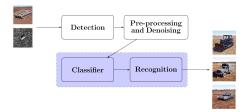


Figure: Schematic of ATR framework. The classification and recognition stages assign an input image/ feature to one of many target classes.

• Detection and discrimination: Identification of target signatures in the presence of clutter



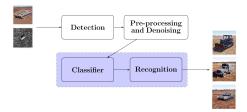


Figure: Schematic of ATR framework. The classification and recognition stages assign an input image/ feature to one of many target classes.

- Detection and discrimination: Identification of target signatures in the presence of clutter
- Denoising: Pre-processing (e.g. removing speckle in SAR imagery)



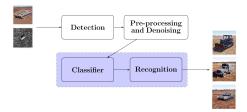


Figure: Schematic of ATR framework. The classification and recognition stages assign an input image/ feature to one of many target classes.

- Detection and discrimination: Identification of target signatures in the presence of clutter
- Denoising: Pre-processing (e.g. removing speckle in SAR imagery)
- Classification: Separation of targets into different classes



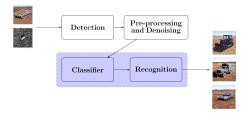
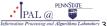


Figure: Schematic of ATR framework. The classification and recognition stages assign an input image/ feature to one of many target classes.

- Detection and discrimination: Identification of target signatures in the presence of clutter
- Denoising: Pre-processing (e.g. removing speckle in SAR imagery)
- Classification: Separation of targets into different classes
- Recognition: Distinguishing between sub-classes within a target class; harder problem than classification



05/26/2011

#### Target classification

- Rich family of algorithmic tools developed over two decades
- Two-stage framework

- <sup>2</sup>Olson et al., IEEE Trans. Image Process., 1997
- $^{3}$ Casasent et al., Neural Networks, 2005
- <sup>4</sup>Gomes et al., IEEE Radar Conf., 2008
- <sup>5</sup>Bhatnagar et al., IEEE ICASSP, 1998
- <sup>6</sup>Grenander et al., IEEE Trans. PAMI, 1998

05/26/2011

PENNSTATE PAL @

## Target classification

- Rich family of algorithmic tools developed over two decades
- Two-stage framework
- Feature extraction from sensed imagery
  - Geometric feature-point descriptors<sup>2</sup>
  - Transform domain coefficients wavelets<sup>3,4</sup>
  - Eigen-templates<sup>5</sup>
  - Estimation-theoretic templates<sup>6</sup>

05/26/2011

PENNSTATE PAL @

<sup>&</sup>lt;sup>2</sup>Olson et al., IEEE Trans. Image Process., 1997

<sup>&</sup>lt;sup>3</sup>Casasent et al., Neural Networks, 2005

<sup>&</sup>lt;sup>4</sup>Gomes et al., IEEE Radar Conf., 2008

<sup>&</sup>lt;sup>5</sup>Bhatnagar et al., IEEE ICASSP, 1998

<sup>&</sup>lt;sup>6</sup>Grenander et al., IEEE Trans. PAMI, 1998

# Target classification

• Decision engine which performs class assignment

- Linear and quadratic discriminant analysis
- Neural networks<sup>7</sup>
- Support vector machines (SVM)<sup>8</sup>
- Hierarchical SVM<sup>9</sup>

<sup>7</sup>Daniell et al., Optical Engineering, 1992

- <sup>8</sup>Zhao et al., IEEE Trans. Aerosp. Electron. Syst., 2001
- 9 Casasent et al., Neural Networks, 2005

05/26/2011



#### Recent research trends

- Search for 'best possible' features from a classification standpoint
- Limited understanding of inter-relationships among different sets of features



#### Recent research trends

- Search for 'best possible' features from a classification standpoint
- Limited understanding of inter-relationships among different sets of features
- No single optimal feature set-decision engine combination
- Exploit complementary yet correlated information offered by different sets of classifiers
  - Classifier fusion



# Classifier fusion

- Same set of features with different decision engines; (mostly) educated heuristic schemes
- Combination of outputs from four decision engines using FLIR data<sup>10</sup>
- Product of individual classification probabilities<sup>11</sup>
- Voting strategy<sup>12</sup>
- Boosting<sup>13</sup>



05/26/2011

<sup>&</sup>lt;sup>10</sup>Rizvi et al., Applied Imagery Pattern Recognition Workshop, 2003

<sup>&</sup>lt;sup>11</sup>Paul et al., IEEE ICASSP, 2003

<sup>&</sup>lt;sup>12</sup>Gomes et al., IEEE Radar Conf., 2008

<sup>&</sup>lt;sup>13</sup>Sun et al., IEEE Trans. Aerosp. Electron. Syst., 2007

<sup>&</sup>lt;sup>14</sup>Nasrabadi, IEEE Int. Conf. Image Process., 2008

# Classifier fusion

- Same set of features with different decision engines; (mostly) educated heuristic schemes
- Combination of outputs from four decision engines using FLIR data<sup>10</sup>
- Product of individual classification probabilities<sup>11</sup>
- Voting strategy<sup>12</sup>
- Boosting<sup>13</sup>
- Related research problem: multi-sensor ATR<sup>14</sup>

05/26/2011



<sup>&</sup>lt;sup>10</sup>Rizvi et al., Applied Imagery Pattern Recognition Workshop, 2003

<sup>&</sup>lt;sup>11</sup>Paul et al., IEEE ICASSP, 2003

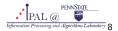
<sup>&</sup>lt;sup>12</sup>Gomes et al., IEEE Radar Conf., 2008

<sup>&</sup>lt;sup>13</sup>Sun et al., IEEE Trans. Aerosp. Electron. Syst., 2007

<sup>&</sup>lt;sup>14</sup>Nasrabadi, IEEE Int. Conf. Image Process., 2008

# Contribution of our work

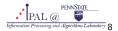
• Meta-classification: Principled strategy to combine complementary benefits<sup>15</sup>



 $<sup>^{15}\</sup>mathrm{Lin}$  et al., Int. Workshop Knowledge Discovery in Multimedia, 2002

# Contribution of our work

- Meta-classification: Principled strategy to combine complementary benefits<sup>15</sup>
- Meta-classifier: Combines classifier decisions from individual classifiers to improve overall classification performance
- Two-stage approach:
  - Obtain different feature sets via multiple projections (to suitable basis)
  - Combine "soft" outputs from individual classifiers into composite meta-feature vector for classification



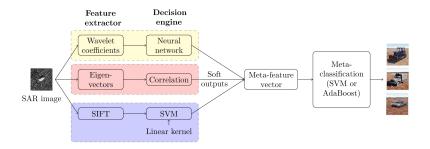
 $<sup>^{15}\</sup>mathrm{Lin}$  et al., Int. Workshop Knowledge Discovery in Multimedia, 2002

# Contribution of our work

- Meta-classification: Principled strategy to combine complementary benefits<sup>15</sup>
- Meta-classifier: Combines classifier decisions from individual classifiers to improve overall classification performance
- Two-stage approach:
  - Obtain different feature sets via multiple projections (to suitable basis)
  - Combine "soft" outputs from individual classifiers into composite meta-feature vector for classification
- Two intuitively-motivated schemes proposed for SAR imagery:
  - Meta-classification using SVMs
  - Meta-classification using boosting

 $<sup>^{15}\</sup>mathrm{Lin}$  et al., Int. Workshop Knowledge Discovery in Multimedia, 2002

# Meta-classification framework



- Complementary merits of different sets of features exploited
- Meta-classification: Creates common ground for combination of diverse types of features



#### Different feature extractors

- Wavelet features + neural network<sup>16</sup>
  - Transform domain features (in  $\mathbb{R}^{256})$
  - LL sub-band coefficients from two-level decomposition using reverse biorthogonal wavelets
  - Multilayer perceptron neural network

<sup>&</sup>lt;sup>18</sup>Grauman et al., Int. Conf. Comp. Vision, 2005





<sup>&</sup>lt;sup>16</sup>Sandirasegaram, Tech. Memo. DRDC Ottawa, 2005

<sup>17</sup> Bhatnagar et al., IEEE ICASSP, 1998

## Different feature extractors

- Wavelet features + neural network<sup>16</sup>
  - Transform domain features (in  $\mathbb{R}^{256})$
  - LL sub-band coefficients from two-level decomposition using reverse biorthogonal wavelets
  - Multilayer perceptron neural network
- Eigen-templates + correlation<sup>17</sup>
  - Spatial domain features (in  $\mathbb{R}^{4096}$ )
  - Training class template: eigen-vector corresponding to largest singular value of training data matrix
  - Decision engine: correlation score

<sup>&</sup>lt;sup>18</sup>Grauman et al., Int. Conf. Comp. Vision, 2005





<sup>&</sup>lt;sup>16</sup>Sandirasegaram, Tech. Memo. DRDC Ottawa, 2005

<sup>17</sup> Bhatnagar et al., IEEE ICASSP, 1998

## Different feature extractors

- Wavelet features + neural network<sup>16</sup>
  - Transform domain features (in  $\mathbb{R}^{256})$
  - LL sub-band coefficients from two-level decomposition using reverse biorthogonal wavelets
  - Multilayer perceptron neural network
- Eigen-templates + correlation<sup>17</sup>
  - Spatial domain features (in  $\mathbb{R}^{4096}$ )
  - Training class template: eigen-vector corresponding to largest singular value of training data matrix
  - Decision engine: correlation score

#### Scale invariant feature transform (SIFT) + SVM

- Computer vision-based features (in  $\mathbb{R}^{128}$ )
- SIFT: robustness to change in image scale, illumination, local geometric transformations and noise
- SVM decision engine<sup>18</sup>

<sup>&</sup>lt;sup>18</sup>Grauman et al., Int. Conf. Comp. Vision, 2005





<sup>&</sup>lt;sup>16</sup>Sandirasegaram, Tech. Memo. DRDC Ottawa, 2005

<sup>17</sup> Bhatnagar et al., IEEE ICASSP, 1998

# Support Vector Machine<sup>19</sup>

• Decision function of binary SVM classifier:

$$f(\mathbf{x}) = \sum_{i=1}^{N} \alpha_i y_i K(\mathbf{s}_i, \mathbf{x}) + b,$$

where  $\mathbf{s}_i$  are support vectors, N is the number of support vectors

- Kernel K : ℝ<sup>n</sup> × ℝ<sup>n</sup> → ℝ maps feature space to higher-dimensional space where separating hyperplane may be more easily determined
- Binary classification decision for  ${\bf x}$  depending on whether  $f({\bf x})>0$  or otherwise
- Multi-class classifiers: one-versus-all approach



 $<sup>^{19}\</sup>mathrm{Vapnik},$  The nature of statistical learning theory, 1995



- Boost the performance of weak learners into a classification algorithm with arbitrarily accurate performance
- Maintain a distribution of weights over the training set
- Weights on incorrectly classified examples are increased iteratively
- Slow learners are penalized for harder examples

#### Algorithm 1 AdaBoost learning algorithm

1: Input data  $(x_i, y_i), i = 1, 2, ..., N$ , where  $x_i \in S, y_i \in \{-1, +1\}$ 2: Initialize  $D_1(i) = \frac{1}{N}, i = 1, 2, ..., N$ 3: For t = 1, 2, ..., T: • Train weak learner using distribution  $D_t$ • Determine weak hypothesis  $f_t : S \mapsto \{-1, +1\}$  with error  $\epsilon_t$ • Choose  $\beta_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t}\right)$ •  $D_{t+1}(i) = \frac{D_t(i) \exp(-\beta_t y_i f_t(x_i))}{Z_t}$ , where  $Z_t$  is a normalization factor 4: Output soft decision  $F(x) = \sum_{t=1}^{T} \beta_t f_t(x)$ .

 $^{\rm 20}{\rm Freund}$  et al., Journal of Japanese Society for Artificial Intelligence, 1999



05/26/2011

#### Image pre-processing

- SAR imagery: low spatial resolution and contrast, clutter, noise
- Speckle noise: Interference between radar waves reflected off target; signal-dependent and multiplicative

$$y[\mathbf{m}] = x[\mathbf{m}] + \sqrt{x[\mathbf{m}]} \ n[\mathbf{m}]$$

 $<sup>^{22}</sup>$ Yu et al., IEEE Trans. Image Process., 2002







<sup>&</sup>lt;sup>21</sup>Frost et al., IEEE Trans. PAMI, 1982

#### Image pre-processing

- SAR imagery: low spatial resolution and contrast, clutter, noise
- Speckle noise: Interference between radar waves reflected off target; signal-dependent and multiplicative

$$y[\mathbf{m}] = x[\mathbf{m}] + \sqrt{x[\mathbf{m}]} \ n[\mathbf{m}]$$

- Speckle denoising: important inverse problem<sup>21</sup>
- Denoising using anisotropic diffusion<sup>22</sup>
  - Better mean preservation
  - Variance reduction
  - Edge localization

<sup>&</sup>lt;sup>22</sup>Yu et al., IEEE Trans. Image Process., 2002





<sup>&</sup>lt;sup>21</sup>Frost et al., IEEE Trans. PAMI, 1982

#### Image pre-processing

- SAR imagery: low spatial resolution and contrast, clutter, noise
- Speckle noise: Interference between radar waves reflected off target; signal-dependent and multiplicative

$$y[\mathbf{m}] = x[\mathbf{m}] + \sqrt{x[\mathbf{m}]} \ n[\mathbf{m}]$$

- Speckle denoising: important inverse problem<sup>21</sup>
- Denoising using anisotropic diffusion<sup>22</sup>
  - Better mean preservation
  - Variance reduction
  - Edge localization
- Registration of image templates frame centering

#### Energy normalization

21 Frost et al., IEEE Trans. PAMI, 1982



<sup>&</sup>lt;sup>22</sup>Yu et al., IEEE Trans. Image Process., 2002

## Experiments

- Moving and Stationary Target Acquisition and Recognition (MSTAR) database for SAR images
- Five target classes
  - T-72 tanks
  - BMP-2 infantry fighting vehicles
  - **BTR-70** armored personnel carriers
  - ZIL131 trucks
  - D7 tractors
- SLICY confusers to test rejection performance

| Target class | Serial number | # Training images | # Test images |  |
|--------------|---------------|-------------------|---------------|--|
| BMP-2        | SN_C21        | 233               | 196           |  |
|              | SN_9563       | 233               | 195           |  |
|              | SN_9566       | 232               | 196           |  |
| BTR-70       | SN_C71        | 233               | 196           |  |
| T-72         | SN_132        | 232               | 196           |  |
|              | SN_812        | 231               | 195           |  |
|              | SN_S7         | 228               | 191           |  |
| ZIL131       | -             | 299               | 274           |  |
| D7           | -             | 299               | 274           |  |

Table: Target classes in the experiment.



## **Results: Classification**

|          | BMP-2 | BTR-70 | T-72 | ZIL131 | D7   | Other |
|----------|-------|--------|------|--------|------|-------|
| BMP-2    | 0.80  | 0.06   | 0.09 | 0.01   | 0.04 | 0     |
| BTR-70   | 0.03  | 0.93   | 0.02 | 0      | 0.02 | 0     |
| T-72     | 0.08  | 0      | 0.77 | 0.10   | 0.04 | 0.01  |
| ZIL131   | 0.08  | 0      | 0.05 | 0.84   | 0.03 | 0     |
| D7       | 0     | 0.03   | 0.06 | 0.05   | 0.86 | 0     |
| Confuser | 0     | 0      | 0.01 | 0      | 0    | 0.99  |

Table: Confusion matrix for wavelet features + neural network classifier.

Table: Confusion matrix for eigen-template matching classifier.

|          | BMP-2 | BTR-70 | T-72 | ZIL131 | D7   | Other |
|----------|-------|--------|------|--------|------|-------|
| BMP-2    | 0.76  | 0.09   | 0.05 | 0.03   | 0.05 | 0.02  |
| BTR-70   | 0.04  | 0.88   | 0.05 | 0      | 0.03 | 0     |
| T-72     | 0.06  | 0.06   | 0.73 | 0.10   | 0.04 | 0.01  |
| ZIL131   | 0.02  | 0.04   | 0.07 | 0.79   | 0.08 | 0     |
| D7       | 0     | 0.03   | 0.06 | 0.04   | 0.87 | 0     |
| Confuser | 0.01  | 0      | 0    | 0      | 0    | 0.99  |

(a)

(b)

#### Table: Confusion matrix for SIFT features + linear SVM classifier.

|          | BMP-2 | BTR-70 | T-72 | ZIL131 | D7   | Other |
|----------|-------|--------|------|--------|------|-------|
| BMP-2    | 0.85  | 0.07   | 0.03 | 0      | 0.03 | 0.02  |
| BTR-70   | 0.02  | 0.91   | 0.05 | 0      | 0.02 | 0     |
| T-72     | 0.03  | 0.04   | 0.82 | 0.06   | 0.04 | 0.01  |
| ZIL131   | 0     | 0.04   | 0.03 | 0.86   | 0.07 | 0     |
| D7       | 0     | 0      | 0.06 | 0.05   | 0.89 | 0     |
| Confuser | 0.01  | 0      | 0.02 | 0      | 0    | 0.97  |

(c)



# Results: Classification

|          | BMP-2 | BTR-70 | T-72 | ZIL131 | D7   | Other |
|----------|-------|--------|------|--------|------|-------|
| BMP-2    | 0.91  | 0.03   | 0.02 | 0.02   | 0.03 | 0     |
| BTR-70   | 0.01  | 0.94   | 0.02 | 0.01   | 0.02 | 0     |
| T-72     | 0.03  | 0.02   | 0.89 | 0.03   | 0.03 | 0     |
| ZIL131   | 0.01  | 0.04   | 0.03 | 0.89   | 0.03 | 0     |
| D7       | 0     | 0.01   | 0.05 | 0.04   | 0.90 | 0     |
| Confuser | 0     | 0      | 0    | 0      | 0    | 1.00  |

Table: Confusion matrix for SVM meta-classifier.

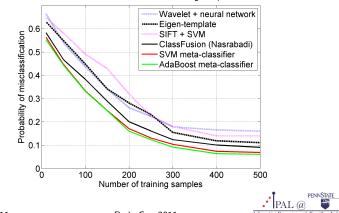
#### Table: Confusion matrix for AdaBoost meta-classifier.

|          | BMP-2 | BTR-70 | T-72 | ZIL131 | D7   | Other |
|----------|-------|--------|------|--------|------|-------|
| BMP-2    | 0.93  | 0.02   | 0.03 | 0.01   | 0.01 | 0     |
| BTR-70   | 0.02  | 0.95   | 0.02 | 0      | 0.01 | 0     |
| T-72     | 0.04  | 0.02   | 0.89 | 0.04   | 0.02 | 0     |
| ZIL131   | 0.01  | 0.03   | 0.02 | 0.90   | 0.04 | 0     |
| D7       | 0     | 0.03   | 0.03 | 0.03   | 0.91 | 0     |
| Confuser | 0     | 0      | 0    | 0      | 0    | 1.00  |



# Experiment: Performance as function of training size

- Practical concern for ATR: limited training resources
- Binary classification problem: T-72 and BMP-2 classes
- $\bullet\,$  Probability of misclassification  $\to$  average of false-alarm and miss.



Misclassification variation with training sample size

# Conclusions

- Virtues of different feature extractors and decision engines combined in a principled manner
- Two meta-classification schemes proposed, based on SVM and AdaBoost
- Test on benchmark SAR datasets show improvements in classification performance
- Robustness in limited training paradigm; superior asymptotic performance



 $<sup>^{23}\</sup>mathrm{Srinivas}$  et al., to appear in IEEE Int. Conf. Image Process., Sept. 2011

# Conclusions

- Virtues of different feature extractors and decision engines combined in a principled manner
- Two meta-classification schemes proposed, based on SVM and AdaBoost
- Test on benchmark SAR datasets show improvements in classification performance
- Robustness in limited training paradigm; superior asymptotic performance
- Extension of current work: graphical-model based classification framework to exploit feature dependencies<sup>23</sup>



 $<sup>^{23}\</sup>mathrm{Srinivas}$  et al., to appear in IEEE Int. Conf. Image Process., Sept. 2011