SAR Automatic Target Recognition via Non-negative Matrix Approximations

Vahid Riasati ${ }^{\dagger} \quad$ Umamahesh Srinivas ${ }^{\ddagger} \quad$ Vishal Monga ${ }^{\ddagger}$

${ }^{\dagger}$ MacAulay-Brown Inc.
Dayton, OH

2012 SPIE Defense, Security + Sensing: Advances in Algorithms for ATR I
April 24, 2012

Automatic Target Recognition (ATR)

- Exploit imagery from diverse sensed sources for automatic target identification ${ }^{1}$
- Variety of sensors: synthetic aperture radar (SAR), inverse SAR (ISAR), forward looking infra-red (FLIR), hyperspectral
- Diverse scenarios: air-to-ground, air-to-air, surface-to-surface

Figure: Schematic of ATR framework. The classification and recognition stages assign an input image/ feature to one of many target classes.

[^0]
Target classification

Two-stage framework:
(1) Feature extraction from sensed imagery

- Geometric feature-point descriptors ${ }^{2}$
- Eigen-templates ${ }^{3}$
- Transform domain coefficients - wavelets ${ }^{4}$

[^1]
Target classification

Two-stage framework:
(1) Feature extraction from sensed imagery

- Geometric feature-point descriptors ${ }^{2}$
- Eigen-templates ${ }^{3}$
- Transform domain coefficients - wavelets ${ }^{4}$
(2) Decision engine which performs class assignment
- Linear and quadratic discriminant analysis
- Neural networks ${ }^{5}$
- Support vector machines (SVM) ${ }^{6}$

[^2]

Recent research trends: Classifier fusion

- Search for 'best possible' features from a classification standpoint
- Exploit complementary yet correlated information offered by different sets of features/classifiers
- Product of individual classification probabilities ${ }^{7}$
- Voting strategy ${ }^{8}$
- Boosting ${ }^{9}$
- Meta-classification ${ }^{10}$

[^3]
Motivation: Feature extraction

- Feature extraction \rightarrow projection to lower dimensional feature space
(1) Inherent low-dimensional space that captures image information with minimal redundancy ${ }^{11}$
(2) Computational benefits for real-time applications

Motivation: Feature extraction

- Feature extraction \rightarrow projection to lower dimensional feature space
(1) Inherent low-dimensional space that captures image information with minimal redundancy ${ }^{11}$
(2) Computational benefits for real-time applications
- Optimization problem:

$$
\boldsymbol{x}=\arg \min _{\hat{\boldsymbol{x}}}\|\boldsymbol{y}-\boldsymbol{A} \hat{\boldsymbol{x}}\|_{2}
$$

- \boldsymbol{y} : target image in \mathbb{R}^{m}
- \boldsymbol{x} : corresponding feature vector in $\mathbb{R}^{n}, n<m$
- A : projection matrix in $\mathbb{R}^{m \times n}$ - collection of n basis vectors, each in \mathbb{R}^{m}

Motivation: Feature extraction

- Feature extraction \rightarrow projection to lower dimensional feature space
(1) Inherent low-dimensional space that captures image information with minimal redundancy ${ }^{11}$
(2) Computational benefits for real-time applications
- Optimization problem:

$$
\boldsymbol{x}=\arg \min _{\hat{\boldsymbol{x}}}\|\boldsymbol{y}-\boldsymbol{A} \hat{\boldsymbol{x}}\|_{2}
$$

- \boldsymbol{y} : target image in \mathbb{R}^{m}
- \boldsymbol{x} : corresponding feature vector in $\mathbb{R}^{n}, n<m$
- A : projection matrix in $\mathbb{R}^{m \times n}$ - collection of n basis vectors, each in \mathbb{R}^{m}
- How to choose A ?

[^4]

Contribution of our work

- Non-negative matrix approximation (NNMA) for feature extraction
- Performance comparison with traditional principal component analysis-based feature extraction

Figure: Proposed target classification framework.

Principal Component Analysis (PCA)

- Statistical tool for dimensionality reduction via change of basis
- Modeling an observation of physical phenomena as a linear combination of basis vectors

- Eigenvectors of data covariance matrix form the projection basis
- Applications in image classification: eigenfaces for face recognition ${ }^{12}$, eigen-templates for ATR ${ }^{13}$

[^5]

Singular Value Decomposition (SVD)

- Generalization of PCA
- Data matrix $\boldsymbol{X} \in \mathbb{R}^{m \times N}$ can be factorized as:

$$
\boldsymbol{X}=\boldsymbol{U} \boldsymbol{\Lambda} \boldsymbol{V}^{T}=\sum_{i=1}^{r} \lambda_{i} \boldsymbol{u}_{i} \boldsymbol{v}_{i}^{T}
$$

- $\boldsymbol{U}=\left[\begin{array}{llll}\boldsymbol{u}_{1} & \boldsymbol{u}_{2} & \cdots & \boldsymbol{u}_{m}\end{array}\right] \in \mathbb{R}^{m \times m}$: matrix of eigenvectors of $\boldsymbol{X} \boldsymbol{X}^{T}$
- $\boldsymbol{V}=\left[\begin{array}{llll}\boldsymbol{v}_{1} & \mathbf{v}_{2} & \cdots & \boldsymbol{v}_{N}\end{array}\right] \in \mathbb{R}^{N \times N}$: matrix of eigenvectors of $\boldsymbol{X}^{T} \boldsymbol{X}$
- $\Lambda \in \mathbb{R}^{m \times N}$: diagonal matrix containing singular values

Singular Value Decomposition (SVD)

- Generalization of PCA
- Data matrix $\boldsymbol{X} \in \mathbb{R}^{m \times N}$ can be factorized as:

$$
\boldsymbol{X}=\boldsymbol{U} \boldsymbol{\Lambda} \boldsymbol{V}^{T}=\sum_{i=1}^{r} \lambda_{i} \boldsymbol{u}_{i} \boldsymbol{v}_{i}^{T}
$$

- $\boldsymbol{U}=\left[\begin{array}{llll}\boldsymbol{u}_{1} & \boldsymbol{u}_{2} & \cdots & \boldsymbol{u}_{m}\end{array}\right] \in \mathbb{R}^{m \times m}$: matrix of eigenvectors of $\boldsymbol{X} \boldsymbol{X}^{T}$
- $\boldsymbol{V}=\left[\begin{array}{llll}\boldsymbol{v}_{1} & \mathbf{v}_{2} & \cdots & \boldsymbol{v}_{N}\end{array}\right] \in \mathbb{R}^{N \times N}$: matrix of eigenvectors of $\boldsymbol{X}^{T} \boldsymbol{X}$
- $\Lambda \in \mathbb{R}^{m \times N}$: diagonal matrix containing singular values

Properties:

- r : rank of X
- $\lambda_{1} \geq \lambda_{2} \geq \ldots \lambda_{r}>0$
- $\boldsymbol{U}^{T} \boldsymbol{U}=\boldsymbol{I}_{m}, \boldsymbol{V}^{T} \boldsymbol{V}=\boldsymbol{I}_{N}$

Singular Value Decomposition (SVD)

- Low-rank approximation:

$$
\boldsymbol{X}_{k}=\sum_{i=1}^{k} \lambda_{i} \boldsymbol{u}_{i} \boldsymbol{v}_{i}^{T}
$$

- Dimensionality reduction when $k \ll r$
- Robustness to noise
- Of all k-rank approximations, \boldsymbol{X}_{k} is optimal

$$
\boldsymbol{X}_{k}=\arg \min _{\operatorname{rank}(\tilde{\boldsymbol{X}})=k}\|\boldsymbol{X}-\tilde{\boldsymbol{X}}\|_{F}
$$

Singular Value Decomposition (SVD)

- Low-rank approximation:

$$
\boldsymbol{X}_{k}=\sum_{i=1}^{k} \lambda_{i} \boldsymbol{u}_{i} \boldsymbol{v}_{i}^{T}
$$

- Dimensionality reduction when $k \ll r$
- Robustness to noise
- Of all k-rank approximations, \boldsymbol{X}_{k} is optimal

$$
\boldsymbol{X}_{k}=\arg \min _{\operatorname{rank}(\tilde{\boldsymbol{X}})=k}\|\boldsymbol{X}-\tilde{\boldsymbol{X}}\|_{F}
$$

Drawbacks:

- Orthogonality of basis vectors unnatural for ATR problem
- U and V have both positive and negative elements in general \rightarrow interpretation of basis vectors difficult

Non-negative Matrix Approximation (NNMA)

- Follows from non-negative matrix factorization (NMF) technique ${ }^{14}$

$$
\boldsymbol{X}=W \boldsymbol{H} ; \quad W, \boldsymbol{H} \geq \mathbf{0}
$$

- SAR ATR: Underlying generative model is a linear combination of basis functions with element-wise non-negative components
- Ready interpretation of W as basis matrix
- Dimensionality reduction: choose W_{k} (first k columns) instead of W

[^6]
Non-negative Matrix Approximation (NNMA)

- Follows from non-negative matrix factorization (NMF) technique ${ }^{14}$

$$
X=W H ; \quad W, H \geq \mathbf{0}
$$

- SAR ATR: Underlying generative model is a linear combination of basis functions with element-wise non-negative components
- Ready interpretation of W as basis matrix
- Dimensionality reduction: choose W_{k} (first k columns) instead of W

Figure: Illustration: NMF vs. PCA for image representation.

[^7]

Non-negative Matrix Approximation (NNMA)

Properties:

- Basis vectors \boldsymbol{w}_{i} not orthogonal by design
- Sparsity of W, \boldsymbol{H} can be enforced additionally
- W, H not unique

Non-negative Matrix Approximation (NNMA)

Properties:

- Basis vectors \boldsymbol{w}_{i} not orthogonal by design
- Sparsity of W, H can be enforced additionally
- W, H not unique

Advantages over SVD/PCA for ATR:

- Easy interpretation of basis vectors
- No orthogonality restriction on basis vectors

Non-negative Matrix Approximation (NNMA)

Alternating Least Squares ${ }^{15}$:

$$
\begin{array}{rc}
\min _{\boldsymbol{W}, \boldsymbol{H}} & \|\boldsymbol{X}-\boldsymbol{W} \boldsymbol{H}\|_{F}^{2} \\
\text { s.t. } & \boldsymbol{W}, \boldsymbol{H} \geq \mathbf{0}
\end{array}
$$

- Not jointly convex in $\boldsymbol{W}, \boldsymbol{H}$ (separably convex however)

[^8]

Non-negative Matrix Approximation (NNMA)

Alternating Least Squares ${ }^{15}$:

$$
\begin{array}{rc}
\min _{\boldsymbol{W}, \boldsymbol{H}} & \|\boldsymbol{X}-\boldsymbol{W} \boldsymbol{H}\|_{F}^{2} \\
\text { s.t. } & \boldsymbol{W}, \boldsymbol{H} \geq \mathbf{0}
\end{array}
$$

- Not jointly convex in $\boldsymbol{W}, \boldsymbol{H}$ (separably convex however)

Alternate formulation: Divergence update ${ }^{16}$

$$
\begin{aligned}
\min _{\boldsymbol{W}, \boldsymbol{H}} D(\boldsymbol{X} \| \boldsymbol{W} \boldsymbol{H})= & \sum_{i, j}\left(\boldsymbol{X}_{i j} \log \frac{\boldsymbol{X}_{i j}}{[\boldsymbol{W} \boldsymbol{H}]_{i j}}-\boldsymbol{X}_{i j}+[\boldsymbol{W} \boldsymbol{H}]_{i j}\right) \\
\text { s.t. } & \boldsymbol{W}, \boldsymbol{H} \geq \mathbf{0}
\end{aligned}
$$

[^9]

Non-negative Matrix Approximation (NNMA)

Alternating Least Squares ${ }^{15}$:

$$
\begin{array}{rc}
\min _{\boldsymbol{W}, \boldsymbol{H}} & \|\boldsymbol{X}-\boldsymbol{W} \boldsymbol{H}\|_{F}^{2} \\
\text { s.t. } & \boldsymbol{W}, \boldsymbol{H} \geq \mathbf{0}
\end{array}
$$

- Not jointly convex in $\boldsymbol{W}, \boldsymbol{H}$ (separably convex however)

Alternate formulation: Divergence update ${ }^{16}$

$$
\begin{aligned}
\min _{\boldsymbol{W}, \boldsymbol{H}} D(\boldsymbol{X} \| \boldsymbol{W} \boldsymbol{H})= & \sum_{i, j}\left(\boldsymbol{X}_{i j} \log \frac{\boldsymbol{X}_{i j}}{[\boldsymbol{W} \boldsymbol{H}]_{i j}}-\boldsymbol{X}_{i j}+[\boldsymbol{W} \boldsymbol{H}]_{i j}\right) \\
\text { s.t. } & \boldsymbol{W}, \boldsymbol{H} \geq \mathbf{0}
\end{aligned}
$$

Feature extraction (corresponding to target vector \boldsymbol{y}):

$$
\boldsymbol{h}=\min _{h}\|\boldsymbol{y}-\boldsymbol{W} \boldsymbol{h}\|_{2}, \text { s.t. } \boldsymbol{h} \geq 0
$$

[^10]

Support Vector Machine (SVM) ${ }^{19}$

- Decision function of binary SVM classifier:

$$
f(\boldsymbol{x})=\sum_{i=1}^{N} \alpha_{i} y_{i} K\left(\boldsymbol{s}_{i}, \boldsymbol{x}\right)+b
$$

where \boldsymbol{s}_{i} are support vectors, N is the number of support vectors, $\left\{y_{i}\right\}$ are support vector class labels.

- Kernel $K: \mathbb{R}^{n} \times \mathbb{R}^{n} \mapsto \mathbb{R}$ maps feature space to higher-dimensional space where separating hyperplane may be more easily determined
- Binary classification decision for \boldsymbol{x} depending on whether $f(\boldsymbol{x})>0$ or otherwise
- Multi-class classifiers: one-versus-all approach
- Widely used in ATR problems ${ }^{17,18}$

[^11]

Overall classification framework

Figure: Proposed target classification framework.

- Projection matrices obtained via PCA and NNMA for feature extraction
- Linear SVM: representative of state-of-the-art classifiers

Experimental set-up

- MSTAR database: one-foot resolution X-band SAR iamges
- Five target classes
(1) T-72 tanks
(2) BMP-2 infantry fighting vehicles
(3) BTR-70 armored personnel carriers
(4) ZIL131 trucks
(5) D7 tractors

Target class	Serial number	\# Training images	\# Test images
BMP-2	SN_C21	233	196
	SN_9563	233	195
	SN_9566	232	196
BTR-70	SN_C71	233	196
T-72	SN_132	232	196
	SN_812	231	195
	SN_S7	228	191
ZIL131	-	299	274
D7	-	299	274

Table: Target classes in the experiment.

Experimental set-up

- Training images: 17° depression angle
- Test images: 15° depression angle
- Images cropped to 64×64 pixels (i.e. vectorized data in \mathbb{R}^{4096})
- Number of basis vectors: 750 (both PCA and NNMA)

Results: Classification performance

Table: Confusion matrix: PCA basis.

Class	BMP-2	BTR-70	T-72	ZIL131	D7
BMP-2	$\mathbf{0 . 8 4}$	0.06	0.04	0.02	0.04
BTR-70	0.05	$\mathbf{0 . 8 7}$	0.03	0.02	0.03
T-72	0.03	0.07	$\mathbf{0 . 8 3}$	0.03	0.04
ZIL131	0.05	0.03	0.02	$\mathbf{0 . 8 4}$	0.06
D7	0.06	0.02	0.04	0.06	$\mathbf{0 . 8 2}$

Table: Confusion matrix: NNMA basis.

Class	BMP-2	BTR-70	T-72	ZIL131	D7
BMP-2	$\mathbf{0 . 8 6}$	0.05	0.02	0.05	0.02
BTR-70	0.07	$\mathbf{0 . 8 8}$	0.04	0.01	0.0
T-72	0.03	0.04	$\mathbf{0 . 8 6}$	0.02	0.05
ZIL131	0.01	0.06	0.05	$\mathbf{0 . 8 7}$	0.01
D7	0.04	0.02	0.06	0.04	$\mathbf{0 . 8 4}$

Conclusions

- Non-negative matrix approximation is a suitable choice for feature projection in ATR problems
- Non-negativity motivated by underlying image physics
- Achieves dimensionality reduction and captures inter-class variations
- Better classification performance compared to traditional PCA features

Conclusions

- Non-negative matrix approximation is a suitable choice for feature projection in ATR problems
- Non-negativity motivated by underlying image physics
- Achieves dimensionality reduction and captures inter-class variations
- Better classification performance compared to traditional PCA features
- Future work:
- NNMA features for meta-classification
- Class-specific dictionary design

Thank You
Questions?

[^0]: ${ }^{1}$ Bhanu et al., IEEE AES Systems Magazine, 1993
 04/24/2012

[^1]: ${ }^{2}$ Olson et al., IEEE Trans. Image Process., 1997
 $3_{\text {Bhatnagar et al., IEEE ICASSP, } 1998}$
 ${ }^{4}$ Casasent et al., Neural Networks, 2005
 ${ }^{5}$ Daniell et al., Optical Engineering, 1992
 ${ }^{6}$ Zhao et al., IEEE Trans. Aerosp. Electron. Syst., 2001
 04/24/2012

[^2]: ${ }^{2}$ Olson et al., IEEE Trans. Image Process., 1997
 ${ }^{3}$ Bhatnagar et al., IEEE ICASSP, 1998
 ${ }^{4}$ Casasent et al., Neural Networks, 2005
 ${ }^{5}$ Daniell et al., Optical Engineering, 1992
 ${ }^{6}$ Zhao et al., IEEE Trans. Aerosp. Electron. Syst., 2001
 04/24/2012

[^3]: ${ }^{7}$ Paul et al., IEEE ICASSP, 2003
 ${ }^{8}$ Gomes et al., IEEE Radar Conf., 2008
 ${ }^{9}$ Sun et al., IEEE Trans. Aerosp. Electron. Syst., 2007
 10 Srinivas et al., IEEE Radar Conf., 2011
 04/24/2012

[^4]: 11 Jolliffe, Principal Component Analysis, Springer, 1986
 04/24/2012

[^5]: 12 Turk and Pentland, IEEE Conf. CVPR, 1991
 13 Bhatnagar et al., IEEE ICASSP, 1998
 04/24/2012

[^6]: 14 Lee and Seung, Nature, 1999
 04/24/2012

[^7]: ${ }^{14}$ Lee and Seung, Nature, 1999
 04/24/2012

[^8]: 15 Paatero and Tapper, 1994
 ${ }^{16}$ Lee and Seung, 2000
 04/24/2012

[^9]: ${ }^{15}$ Paatero and Tapper, 1994
 ${ }^{16}$ Lee and Seung, 2000
 04/24/2012

[^10]: 15 Paatero and Tapper, 1994
 ${ }^{16}$ Lee and Seung, 2000
 04/24/2012

[^11]: ${ }^{17}$ Zhao and Principe, IEEE Trans. Aerosp. Electron. Syst., 2001
 ${ }^{18}$ Casasent and Wang, Neural Networks, 2005
 ${ }^{19}$ Vapnik, The nature of statistical learning theory, 1995
 04/24/2012

