SAR Automatic Target Recognition via Non-negative Matrix Approximations

2012 SPIE Defense, Security + Sensing: Advances in Algorithms for ATR I

April 24, 2012

Automatic Target Recognition (ATR)

- $\bullet\ {\rm Exploit\ imagery\ from\ diverse\ sensed\ sources\ for\ automatic\ target\ identification^1$
- Variety of sensors: synthetic aperture radar (SAR), inverse SAR (ISAR), forward looking infra-red (FLIR), hyperspectral
- Diverse scenarios: air-to-ground, air-to-air, surface-to-surface

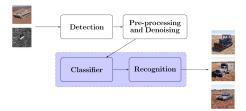


Figure: Schematic of ATR framework. The classification and recognition stages assign an input image/ feature to one of many target classes.

¹Bhanu et al., IEEE AES Systems Magazine, 1993

Target classification

Two-stage framework:

Feature extraction from sensed imagery

- Geometric feature-point descriptors²
- Eigen-templates³
- Transform domain coefficients wavelets⁴

²Olson et al., IEEE Trans. Image Process., 1997

- ³Bhatnagar et al., IEEE ICASSP, 1998
- ⁴Casasent et al., Neural Networks, 2005
- ⁵Daniell et al., Optical Engineering, 1992
- ⁶Zhao et al., IEEE Trans. Aerosp. Electron. Syst., 2001

Target classification

Two-stage framework:

Feature extraction from sensed imagery

- Geometric feature-point descriptors²
- Eigen-templates³
- Transform domain coefficients wavelets⁴

Obecision engine which performs class assignment

- Linear and quadratic discriminant analysis
- Neural networks⁵
- Support vector machines (SVM)⁶

⁶Zhao et al., IEEE Trans. Aerosp. Electron. Syst., 2001

²Olson et al., IEEE Trans. Image Process., 1997

³Bhatnagar et al., IEEE ICASSP, 1998

⁴Casasent et al., Neural Networks, 2005

⁵Daniell et al., Optical Engineering, 1992

Recent research trends: Classifier fusion

- Search for 'best possible' features from a classification standpoint
- Exploit complementary yet correlated information offered by different sets of features/classifiers
 - Product of individual classification probabilities⁷
 - Voting strategy⁸
 - Boosting⁹
 - Meta-classification¹⁰

⁷Paul et al., IEEE ICASSP, 2003

- ⁸Gomes et al., IEEE Radar Conf., 2008
- 9 Sun et al., IEEE Trans. Aerosp. Electron. Syst., 2007

¹⁰Srinivas et al., IEEE Radar Conf., 2011

Motivation: Feature extraction

- \bullet Feature extraction \rightarrow projection to lower dimensional feature space
 - Inherent low-dimensional space that captures image information with minimal redundancy¹¹
 - Ocmputational benefits for real-time applications

 $^{^{11}}$ Jolliffe, Principal Component Analysis, Springer, 1986

^{04/24/2012}

Motivation: Feature extraction

- \bullet Feature extraction \rightarrow projection to lower dimensional feature space
 - Inherent low-dimensional space that captures image information with minimal redundancy¹¹
 - Omputational benefits for real-time applications
- Optimization problem:

$$\boldsymbol{x} = \arg\min_{\hat{\boldsymbol{x}}} \|\boldsymbol{y} - \boldsymbol{A}\hat{\boldsymbol{x}}\|_2$$

- \boldsymbol{y} : target image in \mathbb{R}^m
- \boldsymbol{x} : corresponding feature vector in $\mathbb{R}^n, n < m$
- A: projection matrix in $\mathbb{R}^{m\times n}$ collection of n basis vectors, each in \mathbb{R}^m

¹¹Jolliffe, Principal Component Analysis, Springer, 1986

Motivation: Feature extraction

- \bullet Feature extraction \rightarrow projection to lower dimensional feature space
 - Inherent low-dimensional space that captures image information with minimal redundancy¹¹
 - Omputational benefits for real-time applications
- Optimization problem:

$$\boldsymbol{x} = \arg\min_{\hat{\boldsymbol{x}}} \|\boldsymbol{y} - \boldsymbol{A}\hat{\boldsymbol{x}}\|_2$$

- \boldsymbol{y} : target image in \mathbb{R}^m
- \boldsymbol{x} : corresponding feature vector in $\mathbb{R}^n, n < m$
- A: projection matrix in $\mathbb{R}^{m\times n}$ collection of n basis vectors, each in \mathbb{R}^m
- How to choose A?

¹¹ Jolliffe, Principal Component Analysis, Springer, 1986

Contribution of our work

- Non-negative matrix approximation (NNMA) for feature extraction
- Performance comparison with traditional principal component analysis-based feature extraction

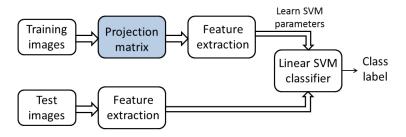
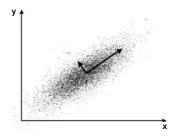


Figure: Proposed target classification framework.

Principal Component Analysis (PCA)

- Statistical tool for dimensionality reduction via change of basis
- Modeling an observation of physical phenomena as a linear combination of basis vectors



- Eigenvectors of data covariance matrix form the projection basis
- Applications in image classification: eigenfaces for face recognition¹², eigen-templates for ATR¹³

 12 Turk and Pentland, IEEE Conf. CVPR, 1991

¹³Bhatnagar et al., IEEE ICASSP, 1998

- Generalization of PCA
- Data matrix $oldsymbol{X} \in \mathbb{R}^{m imes N}$ can be factorized as:

$$\boldsymbol{X} = \boldsymbol{U} \boldsymbol{\Lambda} \boldsymbol{V}^T = \sum_{i=1}^r \lambda_i \boldsymbol{u}_i \boldsymbol{v}_i^T$$

• $m{U} = [m{u}_1 \ m{u}_2 \ \cdots \ m{u}_m] \in \mathbb{R}^{m imes m}$: matrix of eigenvectors of $m{X} m{X}^T$

- $oldsymbol{V} = [oldsymbol{v}_1 \ oldsymbol{v}_2 \ \cdots \ oldsymbol{v}_N] \in \mathbb{R}^{N imes N}$: matrix of eigenvectors of $oldsymbol{X}^T oldsymbol{X}$
- $\mathbf{\Lambda} \in \mathbb{R}^{m imes N}$: diagonal matrix containing singular values

- Generalization of PCA
- Data matrix $oldsymbol{X} \in \mathbb{R}^{m imes N}$ can be factorized as:

$$\boldsymbol{X} = \boldsymbol{U} \boldsymbol{\Lambda} \boldsymbol{V}^T = \sum_{i=1}^r \lambda_i \boldsymbol{u}_i \boldsymbol{v}_i^T$$

• $m{U} = [m{u}_1 \; m{u}_2 \; \cdots \; m{u}_m] \in \mathbb{R}^{m imes m}$: matrix of eigenvectors of $m{X} m{X}^T$

• $m{V} = [m{v}_1 \ \mathbf{v}_2 \ \cdots \ m{v}_N] \in \mathbb{R}^{N imes N}$: matrix of eigenvectors of $m{X}^T m{X}$

• $\mathbf{\Lambda} \in \mathbb{R}^{m imes N}$: diagonal matrix containing singular values

Properties:

• r: rank of X

•
$$\lambda_1 \geq \lambda_2 \geq \ldots \lambda_r > 0$$

• $\boldsymbol{U}^T \boldsymbol{U} = \boldsymbol{I}_m, \, \boldsymbol{V}^T \boldsymbol{V} = \boldsymbol{I}_N$

Low-rank approximation:

$$oldsymbol{X}_{oldsymbol{k}} = \sum_{i=1}^{oldsymbol{k}} \lambda_i oldsymbol{u}_i oldsymbol{v}_i^T$$

- Dimensionality reduction when $k \ll r$
- Robustness to noise
- Of all k-rank approximations, Xk is optimal

$$\boldsymbol{X}_k = \arg\min_{\mathsf{rank}(\tilde{\boldsymbol{X}})=k} \|\boldsymbol{X} - \tilde{\boldsymbol{X}}\|_F$$

Low-rank approximation:

$$oldsymbol{X}_{oldsymbol{k}} = \sum_{i=1}^{oldsymbol{k}} \lambda_i oldsymbol{u}_i oldsymbol{v}_i^T$$

- Dimensionality reduction when $k \ll r$
- Robustness to noise
- Of all k-rank approximations, Xk is optimal

$$\boldsymbol{X}_k = \arg\min_{\mathsf{rank}(\tilde{\boldsymbol{X}})=k} \|\boldsymbol{X} - \tilde{\boldsymbol{X}}\|_F$$

Drawbacks:

- Orthogonality of basis vectors unnatural for ATR problem
- $m{U}$ and $m{V}$ have both positive and negative elements in general ightarrow interpretation of basis vectors difficult

Follows from non-negative matrix factorization (NMF) technique¹⁴

 $X = WH; \quad W, H \ge 0$

- SAR ATR: Underlying generative model is a linear combination of basis functions with element-wise non-negative components
- ullet Ready interpretation of W as basis matrix
- Dimensionality reduction: choose \boldsymbol{W}_k (first k columns) instead of \boldsymbol{W}

¹⁴ Lee and Seung, Nature, 1999

Follows from non-negative matrix factorization (NMF) technique¹⁴

 $X = WH; \quad W, H \ge 0$

- SAR ATR: Underlying generative model is a linear combination of basis functions with element-wise non-negative components
- Ready interpretation of $oldsymbol{W}$ as basis matrix
- Dimensionality reduction: choose \boldsymbol{W}_k (first k columns) instead of \boldsymbol{W}

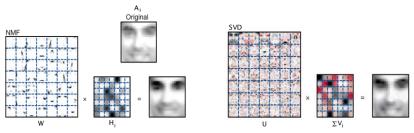


Figure: Illustration: NMF vs. PCA for image representation.

14 Lee and Seung, Nature, 1999

Properties:

- Basis vectors $oldsymbol{w}_i$ not orthogonal by design
- Sparsity of $\boldsymbol{W}, \boldsymbol{H}$ can be enforced additionally
- W, H not unique

Properties:

- Basis vectors $oldsymbol{w}_i$ not orthogonal by design
- Sparsity of $\boldsymbol{W}, \boldsymbol{H}$ can be enforced additionally
- W, H not unique

Advantages over SVD/PCA for ATR:

- Easy interpretation of basis vectors
- No orthogonality restriction on basis vectors

Non-negative Matrix Approximation (NNMA) Alternating Least Squares¹⁵:

$$egin{array}{ll} \min_{oldsymbol{W},oldsymbol{H}} & \|oldsymbol{X}-oldsymbol{W}oldsymbol{H}\|_F^2 \ {
m s.t.} & oldsymbol{W},oldsymbol{H}\geqoldsymbol{0} \end{array}$$

• Not jointly convex in W, H (separably convex however)

 $\begin{array}{c} 15 \\ \text{Paatero and Tapper, 1994} \\ 16 \\ \text{Lee and Seung, 2000} \end{array}$

Non-negative Matrix Approximation (NNMA) Alternating Least Squares¹⁵:

$$egin{array}{ll} \min_{oldsymbol{W},oldsymbol{H}} & \|oldsymbol{X}-oldsymbol{W}oldsymbol{H}\|_F^2 \ {
m s.t.} & oldsymbol{W},oldsymbol{H}\geqoldsymbol{0} \end{array}$$

• Not jointly convex in W, H (separably convex however)

Alternate formulation: Divergence update¹⁶

$$\min_{\boldsymbol{W},\boldsymbol{H}} D(\boldsymbol{X}||\boldsymbol{W}\boldsymbol{H}) = \sum_{i,j} \left(\boldsymbol{X}_{ij} \log \frac{\boldsymbol{X}_{ij}}{[\boldsymbol{W}\boldsymbol{H}]_{ij}} - \boldsymbol{X}_{ij} + [\boldsymbol{W}\boldsymbol{H}]_{ij} \right)$$

s.t. $\boldsymbol{W}, \boldsymbol{H} \ge \boldsymbol{0}$

15 Paatero and Tapper, 1994

Non-negative Matrix Approximation (NNMA) Alternating Least Squares¹⁵:

$$egin{array}{ll} \min_{oldsymbol{W},oldsymbol{H}} & \|oldsymbol{X}-oldsymbol{W}oldsymbol{H}\|_F^2 \ {
m s.t.} & oldsymbol{W},oldsymbol{H}\geqoldsymbol{0} \end{array}$$

• Not jointly convex in W, H (separably convex however)

Alternate formulation: Divergence update¹⁶

$$\min_{\boldsymbol{W},\boldsymbol{H}} D(\boldsymbol{X}||\boldsymbol{W}\boldsymbol{H}) = \sum_{i,j} \left(\boldsymbol{X}_{ij} \log \frac{\boldsymbol{X}_{ij}}{[\boldsymbol{W}\boldsymbol{H}]_{ij}} - \boldsymbol{X}_{ij} + [\boldsymbol{W}\boldsymbol{H}]_{ij} \right)$$
s.t. $\boldsymbol{W}, \boldsymbol{H} \ge \boldsymbol{0}$

Feature extraction (corresponding to target vector \boldsymbol{y}):

$$\boldsymbol{h} = \min_{\boldsymbol{h}} \| \boldsymbol{y} - \boldsymbol{W} \boldsymbol{h} \|_2, \text{ s.t. } \boldsymbol{h} \ge 0$$

15 Paatero and Tapper, 1994

16 Lee and Seung, 2000

Support Vector Machine (SVM)¹⁹

• Decision function of binary SVM classifier:

$$f(\boldsymbol{x}) = \sum_{i=1}^{N} \alpha_i y_i K(\boldsymbol{s}_i, \boldsymbol{x}) + b,$$

where \pmb{s}_i are support vectors, N is the number of support vectors, $\{y_i\}$ are support vector class labels.

- Kernel $K : \mathbb{R}^n \times \mathbb{R}^n \mapsto \mathbb{R}$ maps feature space to higher-dimensional space where separating hyperplane may be more easily determined
- Binary classification decision for \pmb{x} depending on whether $f(\pmb{x})>0$ or otherwise
- Multi-class classifiers: one-versus-all approach
- Widely used in ATR problems^{17,18}

¹⁷ Zhao and Principe, IEEE Trans. Aerosp. Electron. Syst., 2001

¹⁸Casasent and Wang, Neural Networks, 2005

 $^{^{19}}$ Vapnik, The nature of statistical learning theory, 1995

Overall classification framework

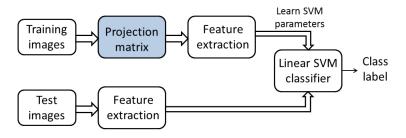


Figure: Proposed target classification framework.

- Projection matrices obtained via PCA and NNMA for feature extraction
- Linear SVM: representative of state-of-the-art classifiers

Experimental set-up

- MSTAR database: one-foot resolution X-band SAR iamges
- Five target classes
 - T-72 tanks
 - BMP-2 infantry fighting vehicles
 - BTR-70 armored personnel carriers
 - IL131 trucks
 - D7 tractors

Target class	Serial number	# Training images	es # Test images	
BMP-2	SN_C21	233	196	
	SN_9563	233	195	
	SN_9566	232	196	
BTR-70	SN_C71	233	196	
T-72	SN_132	232	196	
	SN_812	231	195	
	SN_S7	228	191	
ZIL131	-	299	274	
D7	-	299	274	

Table: Target classes in the experiment.

- Training images: 17° depression angle
- Test images: 15° depression angle
- Images cropped to 64×64 pixels (i.e. vectorized data in \mathbb{R}^{4096})
- Number of basis vectors: 750 (both PCA and NNMA)

Results: Classification performance

Class	BMP-2	BTR-70	T-72	ZIL131	D7
BMP-2	0.84	0.06	0.04	0.02	0.04
BTR-70	0.05	0.87	0.03	0.02	0.03
T-72	0.03	0.07	0.83	0.03	0.04
ZIL131	0.05	0.03	0.02	0.84	0.06
D7	0.06	0.02	0.04	0.06	0.82

Table: Confusion matrix: PCA basis.

Table: Confusion matrix: NNMA basis.

Class	BMP-2	BTR-70	T-72	ZIL131	D7
BMP-2	0.86	0.05	0.02	0.05	0.02
BTR-70	0.07	0.88	0.04	0.01	0.0
T-72	0.03	0.04	0.86	0.02	0.05
ZIL131	0.01	0.06	0.05	0.87	0.01
D7	0.04	0.02	0.06	0.04	0.84

Conclusions

- Non-negative matrix approximation is a suitable choice for feature projection in ATR problems
 - Non-negativity motivated by underlying image physics
 - Achieves dimensionality reduction and captures inter-class variations
 - Better classification performance compared to traditional PCA features

Conclusions

- Non-negative matrix approximation is a suitable choice for feature projection in ATR problems
 - Non-negativity motivated by underlying image physics
 - Achieves dimensionality reduction and captures inter-class variations
 - Better classification performance compared to traditional PCA features
- Future work:
 - NNMA features for meta-classification
 - Class-specific dictionary design

Thank You

Questions?

